INTERVAL CRITERIA FOR
OSCILLATION OF SECOND
ORDER NON-LINEAR NEUTRAL
DELAY DIFFERENTIAL
EQUATIONS

Vidhya.M Kavitha. S
1Research Scholar, Department of Mathematics
2Assistant Professor, Department of Mathematics
Vivekanandha College of Arts and Sciences For Women (Autonomous), Tamilnadu, India.

Abstract

Oscillation criteria are established in this paper for the second order non-linear neutral delay
differential equations

\[\left[w(t) \left(x(t) + m(t) x(t - \tau) \right) \right]' + n(t) f(x(t - \sigma)) = 0 \]

Where \(\tau \) and \(\sigma \) are nonnegative constants, \(w, m, n \in C([t_0, \infty), \mathbb{R}) \), and \(f \in C(\mathbb{R}, \mathbb{R}) \). These results are different from known one in the sense that they are based on the information only on a sequence of subintervals of \([t_0, \infty) \)

Keywords – Neutral differential equations, Oscillation, Criteria, Delay differential equations.

INTRODUCTION

Consider the second order neutral delay differential equation

\[\left[w(t) \left(x(t) + m(t) x(t - \tau) \right) \right]' + n(t) f(x(t - \sigma)) = 0 \] ... [A]

Where \(t \geq t_0, \tau \) and \(\sigma \) are nonnegative constants,

\[m, n \in C([t_0, \infty), \mathbb{R}), \text{ and } f \in C(\mathbb{R}, \mathbb{R}) \]. Let us assume the following as

\[q(t) \geq 0, w(t) > 0, \left(\frac{1}{w(s)} \right) ds = \infty, \]

\[f(x)/x \geq \gamma > 0 \quad \text{for} \ x \neq 0. \]

THEOREM- 1

If (a) \(n(t) \geq 0, w(t) > 0, \left(\frac{1}{w(s)} \right) ds = \infty, f(x)/x \geq \gamma > 0 \) \(\text{for} \ x \neq 0. \) [a]
Holds and \(x(t) \) eventually positive solution of equation (A), then \(z(t) \geq 0, \ z'(t) \geq 0, \)
\[
(w(t)z'(t))' \leq \sigma \text{ on interval } [T_0, \infty)
\]
For some \(T_0 \geq t_0 \) sufficiently large.

Moreover,

(i) If \(0 \leq m(t) \leq 1, \) then
\[
(w(t)z'(t))' + \gamma n(t)(1 - m(t - \delta))z(t - \delta) \leq 0 \
\]
(ii) If \(-1 < m(t) \leq 0 \) then
\[
(w(t)z'(t))' + \gamma n(t)z(t - \delta) \leq 0 \
\]

PROOF:

Without loss of generality assume that \(x(t) > 0 \) for all \(t \geq T_0 - \tau - \delta. \) Since \(x(t) \geq 0 \) equation (A) implies that \((w(t)z'(t))' \leq 0 \) and \((w(t)z'(t)) \) is decreasing.

It follows that
\[
limit_{t \to \infty} w(t)z'(t) = 1
\]
Let us prove that
\[
w(t)z'(t) \geq 0
\]
And[1.1] and[1.2] holds.

(i)
If \(0 \leq m(t) \leq 1, \) then prove that \(w(t)z'(t) \geq 0 \)

Otherwise there exist \(t_1 \geq T_0 \) such that \(z'(t_1) < 0. \)

From \((w(t)z'(t))' \leq 0. \) It follows that
\[
z(t) \leq z(t_1) + w(t_1)z'(t_1) \int_{t_1}^{t} \frac{1}{r(s)} \ ds.
\]
Hence by condition (a) we have \(\lim_{t \to \infty} z(t) = -\infty \) which contradict that \(z(t) > 0 \) for \(t \geq t_0. \)

Now observe that from (A) we have
\[
[w(t)z'(t)'] + n(t)f(x(t - \delta)) = 0. \
\]
From the condition
\[
n(t) \geq \sigma, w(t) > 0, \ (1/w(s)) \ ds = \infty, \ f(x)/x \geq \gamma > 0 \text{ for } x \neq 0.
\]
And by[1.3] we get
\[
[w(t)z'(t)'] + \gamma n(t)[x(t - \delta) - m(t - \delta)x(t - \tau - \delta)] \leq 0
\]
Which in view of the fact that \(z(t) \geq x(t) \) and

If \(z(t) \) is increasing we get
\[
(w(t)z'(t))' + \gamma n(t)(1 - m(t - \delta))z(t - \delta) \leq 0
\]
(ii) If \(-1 < \alpha \leq m(t) \leq 0\) then prove that

\[
\lim_{t \to \infty} x(t) = 1 \geq 0.
\]

Otherwise \(1 < 0\) then we get \(\lim_{t \to \infty} z(t) = -\infty\) which claims that \(z(t)\) cannot be eventually negative on \([T_0, \infty)\)

If that is the case it can consider two mutually exclusive cases.

CASE 1:

\(x(t)\) is unbounded then there exist an increasing sequence \(\{t_k\}, t_k \to \infty, k \to \infty\)

Such that

\[
x(t) = \sup_{t \leq t_k} x(t) \text{ and } x(t_k) \to \infty \text{ as } t_k \to \infty.
\]

We find that

\[
z(t_k) = x(t_k) + m(t_k) x(t_k - \tau) \geq x(t_k) [1 + m(t_k)] \geq 0
\]

Contradicts the fact that \(\lim_{t \to \infty} z(t) = -\infty\)

CASE 2:

\(x(t)\) is bounded then there exist an sequence \(\{t_k\}\) such that

\[
\lim_{k \to \infty} x(t_k) = \lim_{t \to \infty} x(t).
\]

Since the sequence \(\{x(t_k - \tau)\}\) and \(\{m(t_k)\}\) and bounded, there exist convergent subsequences. Therefore, without loss of generality, we may suppose that

\[
\lim_{k \to \infty} (t_k - \tau) \text{ and } \lim_{k \to \infty} m(t_k)
\]

exist.

Hence,

\[
0 > \lim_{k \to \infty} z(t_k) = \lim_{k \to \infty} [x(t_k) + m(t_k) x(t_k - \tau)]
\]

\[
\geq \lim_{k \to \infty} [x(t_k) + m(t_k) x(t_k)]
\]

\[
\geq \lim_{t \to \infty} \sup_{k \to \infty} x(t) [1 + \lim_{k \to \infty} m(t_k)]
\]

\[
\geq 0.
\]

This is also a contradiction.

Thus we must have \(1 \geq 0\), which implies that \(z(t)\) must be eventually positive.

i.e.) there exist \(t_0 \geq t_0\) such that \(z(t) > 0\) for all \(t \geq t_0\). Otherwise since \(\lim_{t \to \infty} w(t) x(t) = 1 \geq 0\), and \(w(t) x(t)\) is nonincreasing, we must have \(z(t) < 0\) for some \(t \geq t_0\).

We therefore have

\[
z(t) < 0, z'(t) \geq 0, (w(t) \alpha'(t))' \leq 0
\]

on \([T_0, \infty)\) for some \(T_0 \geq t_0\) sufficiently large.

From condition (a), we have \(f(x(t) - \delta) \geq \gamma x(t - \delta) \geq \gamma z(t - \delta)\) for \(t \geq t_0\) sufficiently large. And we find equation (A) implies the equation for \(z(t)\).
Hence proved.

RESULT:

In theorem 1 if \(x(t) \) is an eventually negative solution of (A), then the relevant result hold.

In the sequence we say that a function \(H = H(t, s) \) belongs to function class \(K \), denoted \(HEK \), if
\[
H \in C(D, R_{+} = (0, \infty)) \quad \text{and} \quad k \in C^{1}(D, R_{+})
\]

Where \(D = \{(t, s); -\infty < s < t < \infty\} \) which satisfies
\[
H(t, t) = 0, H(t, s) > 0, \quad \text{for} \ t > s, \quad \text{.......... (B1)}
\]

And has partial derivatives
\[
\frac{\partial H(t, s)}{\partial t} \quad \text{and} \quad \frac{\partial H(t, s)}{\partial s} \quad \text{on} \ D \quad \text{such that}
\]
\[
\frac{\partial}{\partial s} \left(H(t, s)k(t) \right) = h_{1}(t, s)\sqrt{(H(t, s)k(t))}.
\]
\[
\frac{\partial}{\partial s} \left(H(t, s)k(t) \right) = -h_{2}(t, s)\sqrt{(H(t, s)k(t))}, \quad \text{.......... (B2)}
\]

Where \(h_{1}, h_{2} \in C(D, R) \).

THEOREM-2

If (a)
\[
n(t) \geq 0, w(t) > 0, \quad x(t) = \left(\frac{1}{w(s)} \right) ds = \infty, f(x) / x \equiv \gamma > 0
\]

For \(x(t) \neq 0 \) holds and \(x(t) \) be a solution of (A) such that \(x(t) \neq 0 \) for some \(T_{0} \). For any \(g \in C^{1}(T_{0}, \infty, R) \) let
\[
r(t) = -\nu(t) \left(\frac{w(t)x'(t)}{x(t) - \delta} + w(t) - \delta \right) \quad \text{.......... [2.1]}
\]

Where \(t \in [T_{0}, \infty) \). Then for any \(H \in K \).

(i). If \(0 \leq m(t) \leq 1 \) and \(t \in [c, b] \subset [T_{0}, \infty) \) then
\[
\int_{c}^{b} H(b, s) \phi_{1}(s) ds \leq -H(b, c)k(c)w(c) + \frac{1}{4} \int_{c}^{b} w(s - \delta)\nu(s)h_{2}^{2}(t, s) ds.
\]

(ii). If \(-1 < a < m(t) \leq 0 \) and \(t \in [c, b] \subset [T_{0}, \infty) \) then
\[
\int_{c}^{b} H(b, s) \phi_{2}(s) ds \leq -H(b, c)k(c)r(c) + \frac{1}{4} \int_{c}^{b} w(s - \delta)\nu(s)h_{2}^{2}(t, s) ds.
\]

PROOF
CASE (i)

Without loss of generality assume that \(x(t) > 0 \) for all \(t \geq T_0 + \tau - \delta \)

Differentiating [2.1] and make use of (A) and by theorem (1.) Case: (i), we get that for \(s \in [c, b) \)

\[
r'(s) = 2g(s)r(s) - v(s) \left(\frac{(w(s)x'(s))'}{x(s-\delta)} - \frac{w(s)x'(s)x'(s-\delta)}{x^2(s-\delta)} + [w(s-\delta)g(s)]' \right) \\
\geq 2g(s)r(s) + v(s) \left(\gamma n(s)[1 - m(s - \delta)] + \frac{w(s)x'(s)x'(s-\delta)}{x^2(s-\delta)} - [w(s-\delta)g(s)]' \right)
\]

From the fact that \(w(s)x'(s) \) is decreasing, we get
\[w(s)x'(s) \leq w(s-\delta)x'(s-\delta)\]

For \(s \geq T_0 \)

From the above we know that
\[
r'(s) \geq 2g(s)r(s) + v(s) \left(\gamma n(s)[1 - m(s - \delta)] + \frac{1}{w(s-\delta)} \left(\frac{w(s)x'(s)}{x(s-\delta)} \right)^2 - [w(s-\delta)g(s)]' \right) \\
= 2g(s)r(s) + v(s) [w(s-\delta)g(s)]' + v(s) \left(\gamma n(s)[1 - m(s - \delta)] + \frac{1}{w(s-\delta)} \left(\frac{w(s)}{v(s)} - w(s-\delta)g(s) \right)^2 \right) \\
= \varphi_4(s) + \frac{1}{w(s-\delta)v(s)}r^2(s).
\]

It follows that
\[
\varphi_4(s) \leq r'(s) - \frac{1}{w(s-\delta)v(s)}r^2(s). \tag{2.2}
\]

Multiplying [2.2] by \(H(t,s)k(s) \),

And integrating it with respect to \(s \) from \(c \) to \(t \) for \(t \in [c, b) \), and using the result of (B1) and (B2), one can get
\[
\int_c^t \int_c^s H(t,s)k(s)\varphi_4(s)ds \leq \int_c^t \int_c^s H(t,s)k(s)r'(s)ds - \int_c^t \int_c^s \frac{1}{w(s-\delta)v(s)}H(t,s)k(s)r'(s)ds \\
= -H(t,c)k(c)r(c) + \int_c^t h_2(t,s)\sqrt{H(t,s)k(s)r(s)}ds - \int_c^t \frac{H(t,s)k(s)}{w(s-\delta)v(s)}r^2(s)ds \\
= -H(t,c)k(c)r(c) - \int_c^t \left[\frac{H(t,s)k(s)}{w(s-\delta)v(s)}r(s) - \frac{1}{2w(s-\delta)v(s)}h_2(t,s) \right]^2 ds + \frac{1}{4} \int_c^t w(s-\delta)v(s)h_2^2(t,s)ds \\
\leq -H(t,c)k(c)r(c) + \frac{1}{4} \int_c^t w(s-\delta)v(s)h_2^2(t,s)ds.
\]
Letting $t \to b^-$ in the above (i) is proved.

\[
\int_c^b H(b, s) \varphi_1(s) \, ds \leq -H(b, c) k(c) r(c) + \frac{1}{4} \int_c^b w(s - \delta) v(s) h_2^2(t, s) \, ds.
\]

CASE (ii)

Without loss of generality assume that $x(t) > 0$ for all $t \geq T_0 - \tau - \delta$.

Differentiating \([2.1]\) and make use of \(A\) and by theorem \((1)\)

Case: (ii) we get that for $s \in [c, b)$

\[
r'(s) = 2g(s) r(s) - v(s) \left\{ \frac{w(s)}{z(s - \delta)} - \frac{w(s) z'(s)}{z(s - \delta)} (s - \delta) \right\} + [w(s - \delta) g(s)']
\geq 2g(s) r(s) + v(s) \left\{ \frac{1}{w(s - \delta)} \frac{w(s)}{z(s - \delta)} z'(s) - [w(s - \delta) g(s)'] \right\}
\]

Similar to the proof of theorem \((1)\) we can show the following inequality:

\[
\phi_2(s) \leq r'(s) - \frac{1}{w(s - \delta) v(s)} r^2(s).
\]

Multiplying \([2.3]\) by $H(t, s) k(s)$

And integrating it with respect to s from c to t for $t \in [c, b)$,

\[
\int_c^t H(t, s) k(s) \phi_2(s) \, ds \leq \int_c^t H(t, s) k(s) r'(s) \, ds - \int_c^t \frac{1}{w(s - \delta) v(s)} H(t, s) k(s) r^2(s) \, ds
\]

\[
= -H(t, c) k(c) r(c) + \int_c^t H(t, s) k(s) r(s) \, ds - \int_c^t \frac{H(t, s) k(s)}{w(s - \delta) v(s)} r^2(s) \, ds
\]

\[
= -H(t, c) k(c) r(c) - \int_c^t \left[\frac{H(t, s) k(s)}{w(s - \delta) v(s)} r(s) - \frac{1}{2} \sqrt{w(s - \delta) v(s)} h_2(t, s) \right] \, ds + \frac{1}{4} \int_c^t w(s - \delta) v(s) h_2^2(t, s) \, ds
\]

\[
\leq -H(t, c) k(c) r(c) + \frac{1}{2} \int_c^t w(s - \delta) v(s) h_2^2(t, s) \, ds.
\]

Letting $t \to b^-$ in the above (ii) is proved.

\[
\int_c^b H(b, s) \varphi_2(s) \, ds \leq -H(b, c) k(c) r(c) + \frac{1}{4} \int_c^b w(s - \delta) v(s) h_2^2(t, s) \, ds.
\]

Hence proved.
CONCLUSION:

Throughout this work, we discussed some definition and theorems on Interval criteria for oscillation of second order non-linear neutral delay differential equations and then we discussed for the oscillation of second order non-linear neutral delay differential equations with non-negative constants on the interval $[t_0, \infty).$ Finally we establish that, when the co-efficient of neutral delay differential equations is zero so that the solution of the second order non-linear equation is oscillatory.

REFERENCE:

