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 ABSTRACT 

The study highlights the effectiveness of the Q-learning system in cryptographic key generation against simulated 

attacks. Its dynamic adaptability, adjusting strategies based on the type of attack, is noteworthy. The analysis shows 

that the system learns to counter threats by choosing specific key generation methods. The curves of Q-values 

illustrate the system's constant progression, especially for the "Dynamic Key Adaptation" strategy, emphasizing the 

proactive ability of Q-learning to adjust to attacks and enhance the security of digital exchanges. 
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1. INTRODUCTION 

Robust cryptographic keys are essential to ensure the security of exchanges. The integration of Q-Learning into this 

process represents an adaptable and forward-thinking approach, enabling intelligent adaptation to emerging threats. 

This methodology meticulously selects key generation methods in response to intrusion attempts or identified 

patterns.  

2. LITERATURE REVIEW ON CONTEMPORARY KEY GENERATION METHODS 

 

Several significant research efforts have contributed to enriching this domain, highlighting the growing importance 

of innovative methods. A study titled "Machine Learning Based Key Generating for Cryptography," conducted by 

Hayfaa Abdulzahra Atee, Norliza Noor, Robiah Ahmad, and Abidulkarim K. I. Yasar and published in January 2026 

on ResearchGate, explores the use of machine learning to generate cryptographic keys [1]. Another relevant research 

is that of Satyanarayana Pamarthi and R. Narmadha, published on SpringerLink in November 2021, which examines 

the key generation process in chaotic maps, using the SA-SFO algorithm to produce optimal key pairs [2]. 

Additionally, an article published on IEEE in 2022 by J.S. Prasath, Deepa Jose, B. Rammyaa, and R. Pandian, titled 

"Dynamic Key Generation Mechanism to Strengthen Data Security," presents a new dynamic key generation 

algorithm, generating unique keys for each encoding to enhance data security [3]. These contributions demonstrate 

the constant evolution of key generation methods and their adaptation to contemporary challenges in computer 

security. 

 



Vol-10 Issue-2 2024                IJARIIE-ISSN(O)-2395-4396 
     

22710 www.ijariie.com 172 

3. CONTEXT AND RELEVANCE OF Q-LEARNING 

In the context of secure digital exchanges, the robustness of cryptographic keys is vital to ensure the confidentiality 

and authenticity of data. Threats such as interception or tampering underscore these critical issues. The introduction 

of Q-Learning, a machine learning algorithm, provides an innovative solution to this challenge. Based on trial-and-

error reinforcement, Q-Learning dynamically adapts to the evolving landscape of attacks [4][5]. By identifying 

patterns or intrusion attempts, it enables intelligent selection of cryptographic key generation methods. 

 

4. METHODOLOGY 

 
4.1 Q-Learning Algorithm 

Start 

    Initialize Q(s, a) to 0 for all a in A and s in S 

 

    Repeat for each episode: 

        Choose the initial state s 

 

        Repeat for each step of the episode until reaching the terminal state: 

            Select an action a from s using a policy based on Q (e.g., epsilon-greedy) 

            Take action a, observe the reward r, and the next state s' 

            Update Q(s, a) <- Q(s, a) + α * [r + γ * max(Q(s', a')) - Q(s, a)] 

            s <- s' 

 

        End of the episode steps loop 

 

    End of the episodes loop 

End 

 

The Q-learning algorithm is a reinforcement learning technique where Q-values are updated based on observed 

rewards and future estimates [6]. The agent explores the environment, chooses actions via an epsilon-greedy policy, 

observes rewards, and iteratively updates its knowledge. This approach strengthens the agent's ability to make 

optimal decisions over time [7]. 

 

4.2 Initialization of the Q-Learning Process 

The initialization of Q-Learning involves initially setting the values of the Q-table, represented as 𝑄(𝑠, 𝑎), for each 

state  s and action a, along with learning parameters such as the learning rate  and the discount factor . This is 

expressed as: [6] 

𝑄(𝑠, 𝑎) ← 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴                                                    (1) 

Where 𝑆 is the set of states, and 𝐴 is the set of possible actions in the given context. 

4.3 Detection of Attack Attempts or Patterns 

The process of detecting attack attempts by Q-Learning can be based on specific metrics to assess the system's state. 

If we consider a generic metric M evaluating state st at time t and a detection function f(M), the detection could be 

formulated as follows: [7] 

- 𝑀 = Metric evaluating the system state 

- 𝑠𝑡 = System state at time t  

- 𝑓(𝑀) = Detection function applied to metric 𝑀 

In the context of attack detection, the function 𝑓(𝑀) can be expressed as: 

𝑓(𝑀) = 𝐻(𝑀 − 𝑆)                                                                               (2) 
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Where  𝑆 represents the threshold, and 𝐻 is the activation function (threshold function). If the metric 𝑀 surpasses 

the threshold 𝑆, 𝑓(𝑀) will be 1, indicating an attack attempt. Otherwise, 𝑓(𝑀) will be 0. 

Thus, the detection of attack attempts or patterns can utilize 𝑓(𝑀) to trigger specific responses when 𝑀 surpasses or 

does not meet a predefined threshold, indicating an abnormal state or potentially an attack [8]. 

4.4 Key Generation Method Selection 

The selection of action 𝑎𝑡, which is the key generation method at state 𝑠𝑡, is determined using the policy , which 

can be defined as follows : 

(𝑠𝑡) = arg 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎)                                                                     (3) 

Where 𝑠𝑡 represents the current state at time t, 𝑎𝑡 is the action (key generation method) selected at time t, 𝑄(𝑠𝑡 , 𝑎) 

represents the value in the Q-table for state st and action a, and arg 𝑚𝑎𝑥𝑎   denotes the action a that maximizes the 

value in the Q-table for state st. 

This equation determines the key generation method to be used at each step by choosing the one that maximizes the 

predicted value in the Q-table for the current state [9]. 

4.5 Evaluation and update of the Q-Table 

The evaluation of generated keys can be represented by a reward function R that assigns a value to each generated 

key. This function assesses the robustness or quality of the produced key based on security criteria. 

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝜔1. 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1(𝑠𝑡 , 𝑎𝑡) + 𝜔2. 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛2(𝑠𝑡 , 𝑎𝑡) + 𝜔3. 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛3(𝑠𝑡 , 𝑎𝑡)                   (4) 

In this formula, 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1(𝑠𝑡 , 𝑎𝑡), 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛2(𝑠𝑡 , 𝑎𝑡), and 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛3(𝑠𝑡 , 𝑎𝑡) are the evaluations of specific 

security criteria for the key generated at state 𝑠𝑡 with action 𝑎𝑡, and 𝜔1, 𝜔2, and 𝜔3 are the weights assigned to each 

criterion respectively. 

This reward is utilized to update the Q-table using the standard Q-learning update algorithm, which involves 

adjusting the Q-value for state 𝑠𝑡 and action 𝑎𝑡 based on the obtained reward and the current values in the Q-table 

[10]. The Q-table update can be performed using the Q-update formula 𝑄 [10]. 

La mise à jour de la table 𝑄 peut être réalisée en utilisant la formule de mise à jour 𝑄 : 

𝑄(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼). 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼. [𝑅(𝑠𝑡 , 𝑎𝑡) + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎)]                      (5) 

Where 𝛼 is the learning rate controlling the extent to which new information replaces old Q-values, 𝛾 is the 

discount factor determining the importance of long-term rewards compared to immediate rewards, 𝑠𝑡+1 represents 

the next state, and a is the possible action at the next state. 

This Q-table update is iterative and occurs after each key generation and evaluation, allowing Q-learning to adapt to 

received rewards and improve the quality of decisions made when selecting key generation methods [11]. 
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5. RESULTS 
5.1 Progression of Q-Learning Q-Table Adaptation in Response to Cryptographic menaces 

 

Fig -1: Evolution of Q-Learning Q-Table Adaptation Against Cryptographic menaces 

The dynamic key exchange scheme refers to the periodic and proactive modification of cryptographic keys, thereby 

reducing risks associated with potential compromise. Authenticity validation involves verifying the identity of the 

parties, ensuring that only legitimate entities are involved in communication. Finally, intelligent protocol selection 

dynamically adapts the choice of communication protocol based on context, optimizing security and real-time 

performance. The upward trends in Q-table values for strategic actions such as "Dynamic Key Adaptation," 

"Authenticity Validation," and "Protocol Selection" highlight the continuous adaptability of Q-Learning to enhance 

the security of digital exchanges. This consistent improvement denotes its ability to proactively adjust to potential 

attacks. 

5.2 Performance Comparison Against Attacks 

Step 1: No attack. Normal key generation: generate_random_seq 

Generated key: a@12KLpqw 

Step 2: Key weakness attack detected. Parameter adjusted: 2 

Key generation method: generate_weighted_random 

Generated key: ACCCAACBCC 

Step 3: No attack. Normal key generation: generate_random_seq 

Generated key: b?34hjx !eV 

Step 4: Fault injection attack detected. 

Key generation method: generate_modulated_random 

Generated key: rBV{E9W34: 

Step 5: Brute force attack detected. 

Key generation method: generate_random_seq 

Generated key: j7HFsDKdFW 

Step 6: Differential cryptanalysis attack detected. 

Key generation method: generate_modulated_random 

Generated key: vxgID3cM8k 
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Step 7: No attack. Normal key generation: generate_random_seq 

Generated key: gL14PT#tyP 

Step 8: Covert channel attack detected. Parameter adjusted: 2 

Key generation method: generate_weighted_random 

Generated key: ACCCACCCAB 

Step 9: No attack. Normal key generation: generate_random_seq 

Generated key: PO98%fge)t 

Step 10: No attack. Normal key generation: generate_random_seq 

Generated key: XO78%ghai% 

Step 11: Brute force attack detected. 

Key generation method: generate_random_seq 

Generated key: a3N4l878Q7 

Step 12: Attack detected. Parameter adjusted: 2 

Key generation method: generate_weighted_random 

Generated key: ACCBCCCACA 

Step 13: No attack. Normal key generation: generate_random_seq 

Generated key: UOtyw12Ly 

Step 14: Private key compromise attack detected. Parameter adjusted: 0 

Key generation method: generate_random_seq 

Generated key: DyCYPls20 

 

The results convincingly demonstrate the system's dynamic adaptive capability in the face of attacks. Detection of 

an attack at step 2 leads to an adjustment of the system parameter, which then selects the key generation method 

based on a weighted random sequence. This strategy aims to counter a random attack by generating complex keys. 

When a fault injection attack is detected at step 4, the system adjusts again by choosing the random modulation 

method. 

 

5.3 Adaptation of Key Generation Methods in Response to Attacks 

The stacked bar chart illustrates the reactivity rate of key generation methods at each stage of attack detection. 

 

Fig -2: Key Generation Method Change in Response to Detected Attacks 

Each method, represented by a distinct color (blue for generate_random_seq, green for generate_weighted_random, 

and orange for generate_modulated_random), shows a 100% response to each attack, corresponding to a value of 1 
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on the graph. This result suggests that each method systematically changes in response to an attack, demonstrating 

maximum responsiveness upon detection. Custom labels on the x-axis indicate different stages of the process, while 

the y-axis is labeled as the 'Method Reactivity Rate,' emphasizing the methods' ability to quickly adjust their key 

generation strategy in the presence of threats. 

 

5.4 Performance Analysis in the Face of Attack Frequency Variations 

 

Fig -3: Variation in Attack Frequency and Detection Rate 

The results of the attack detection system can be interpreted by considering variations in attack frequency over 

multiple iterations. When the attack frequency is relatively low (20%) during the initial iterations (iterations 1 to 50), 

the system demonstrates a consistent ability to identify suspicious patterns or behaviors, even in periods of low 

attack activity. In a later phase with a considerably higher attack frequency (80%) in subsequent iterations (iterations 

51 to 100), the system maintains its robustness by effectively detecting attacks despite a significant increase in 

frequency. Notably, the attack detection rate remains nearly constant, oscillating between 1 and 1.5, emphasizing the 

stability and effectiveness of the system. This constancy in the attack detection rate, even in the face of significant 

variations in attack frequency, reflects the system's ability to dynamically adjust its key generation methods in 

response to detected attacks, demonstrating its resilience. 

 

6. OBSERVATIONS 
The results demonstrate the remarkable adaptability of the system to attacks, efficiently adjusting its parameters and 

key generation methods in response to the detection of specific attacks. Frequent changes in key generation methods 

indicate a dynamic adaptation strategy, strengthening the system's security. Even with a significant increase in the 

attack frequency to 80%, the system maintains its detection capability, highlighting its robustness against substantial 

increases in the number of attacks. In summary, the system exhibits effective strategic flexibility to counter various 

cryptographic threats, enhancing its security in environments where attack frequencies may vary. 

 

7. INTERPRETATIONS 
The results highlight the remarkable ability of the system to strategically adjust to cryptographic attacks. Detecting 

attacks early, the system adapts its key generation methods specifically, illustrating a proactive response to each 
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threat. The frequent changes in key generation methods reflect dynamic adaptation, strengthening system security. 

Despite a significant increase in the frequency of attacks, the system maintains its detection capability, 

demonstrating its robustness. These results confirm the reliability of the system in realistic scenarios, establishing a 

solid foundation for its application in critical environments requiring effective protection against cryptographic 

threats. 

8. CONCLUSION AND PERSPECTIVES 
The conclusion underscores the effectiveness of the adaptive system based on Q-learning in cryptographic key 

generation, with successful strategic adjustments in response to simulated attacks. The results highlight the 

importance of adaptability and diversification of methods to enhance the security of digital exchanges. Future 

perspectives could involve exploring more advanced strategies, integrating anomaly detection mechanisms, and 

optimizing learning parameters for finer decision-making. 

 

9. REFERENCES  
[1]. H. A. Atee, N. Noor, R. Ahmad, A. K. I. Yasar (janvier 2026). "Machine Learning Based Key Generating for 

Cryptography". Middle Technical University, Universiti Teknologo Malaysia, Al Muthanna University. Article 

publié sur ResearchGate. 

[2]. S. Pamarthi, R. Narmadha (18 novembre 2021). "Adaptive Key Management-Based Cryptographic Algorithm 

for Privacy Preservation in Wireless Mobile Adhoc Networks for IoT Applications". SpringerLink. 

[3]. J.S. Prasath, D. Jose, B. Rammyaa, R. Pandian (2022). "Dynamic Key Generation Mechanism to Strengthen the 

Data Security". Article publié sur IEEE. 

[4]. R. S. Sutton, A. G. Barto (2018). « Reinforcement Learning: An Introduction ». MIT Press. 

[5]. I. Goodfellow, Y. Bengio, A. Courville (2016). «Deep Learning ». MIT Press. 

[6]. D. R. Stinson (2006). « Cryptography: Theory and Practice ». CRC Press. 

[7]. S. J. Russell, P. Norvig (2010). « Artificial Intelligence: A Modern Approach ». Pearson. 

[8]. M. Abadi (2016). « Deep Learning with Differential Privacy ». ACM Transactions on Machine Learning 

(TOMM). 

[9]. D. Boneh, V. Shoup (1997). « Fast Variants of RSA ». International Conference on the Theory and Application 

of Cryptology and Information Security. 

[10]. G. A. Rummery, M. Niranjan (1994). « On-line Q-learning using Connectionist Systems ». Cambridge 

University Engineering Department, Internal Report. 

[11]. H. Zhang (2019). «A Survey on Reinforcement Learning in Blockchain: Toward Blockchain 3.0 ». IEEE 

Access. 

 

 


