
Vol-10 Issue-2 2024 IJARIIE-ISSN(O)-2395-4396

22710 www.ijariie.com 171

Intelligent Selection of Key Generation

Methods in Cryptography via Classical Q-

Learning

Rajaosolomanantena Haingonirina Ignace
1
, Ravaliminoarimalalason Toky Basilide

2
,

Randimbindrainibe Falimanana
3

1
 Student at Ecole Doctorale en Sciences et Techniques de l'Ingénierie et de l'Innovation, Laboratory of

Cognitive Sciences and Applications, University of Antananarivo, Madagascar
2
 Professor at Ecole Doctorale en Sciences et Techniques de l'Ingénierie et de l'Innovation, Laboratory of

Cognitives Sciences and Applications, University of Antananarivo
 3
 Professor at Ecole Doctorale en Sciences et Techniques de l'Ingénierie et de l'Innovation, Laboratory of

Cognitives Sciences and Applications, University of Antananarivo

 ABSTRACT

The study highlights the effectiveness of the Q-learning system in cryptographic key generation against simulated

attacks. Its dynamic adaptability, adjusting strategies based on the type of attack, is noteworthy. The analysis shows

that the system learns to counter threats by choosing specific key generation methods. The curves of Q-values

illustrate the system's constant progression, especially for the "Dynamic Key Adaptation" strategy, emphasizing the

proactive ability of Q-learning to adjust to attacks and enhance the security of digital exchanges.

Keyword : - Q-learning, Key generation, Dynamic adaptability, Cybersecurity, Simulated attacks.

1. INTRODUCTION

Robust cryptographic keys are essential to ensure the security of exchanges. The integration of Q-Learning into this

process represents an adaptable and forward-thinking approach, enabling intelligent adaptation to emerging threats.

This methodology meticulously selects key generation methods in response to intrusion attempts or identified

patterns.

2. LITERATURE REVIEW ON CONTEMPORARY KEY GENERATION METHODS

Several significant research efforts have contributed to enriching this domain, highlighting the growing importance

of innovative methods. A study titled "Machine Learning Based Key Generating for Cryptography," conducted by

Hayfaa Abdulzahra Atee, Norliza Noor, Robiah Ahmad, and Abidulkarim K. I. Yasar and published in January 2026

on ResearchGate, explores the use of machine learning to generate cryptographic keys [1]. Another relevant research

is that of Satyanarayana Pamarthi and R. Narmadha, published on SpringerLink in November 2021, which examines

the key generation process in chaotic maps, using the SA-SFO algorithm to produce optimal key pairs [2].

Additionally, an article published on IEEE in 2022 by J.S. Prasath, Deepa Jose, B. Rammyaa, and R. Pandian, titled

"Dynamic Key Generation Mechanism to Strengthen Data Security," presents a new dynamic key generation

algorithm, generating unique keys for each encoding to enhance data security [3]. These contributions demonstrate

the constant evolution of key generation methods and their adaptation to contemporary challenges in computer

security.

Vol-10 Issue-2 2024 IJARIIE-ISSN(O)-2395-4396

22710 www.ijariie.com 172

3. CONTEXT AND RELEVANCE OF Q-LEARNING

In the context of secure digital exchanges, the robustness of cryptographic keys is vital to ensure the confidentiality

and authenticity of data. Threats such as interception or tampering underscore these critical issues. The introduction

of Q-Learning, a machine learning algorithm, provides an innovative solution to this challenge. Based on trial-and-

error reinforcement, Q-Learning dynamically adapts to the evolving landscape of attacks [4][5]. By identifying

patterns or intrusion attempts, it enables intelligent selection of cryptographic key generation methods.

4. METHODOLOGY

4.1 Q-Learning Algorithm

Start

 Initialize Q(s, a) to 0 for all a in A and s in S

 Repeat for each episode:

 Choose the initial state s

 Repeat for each step of the episode until reaching the terminal state:

 Select an action a from s using a policy based on Q (e.g., epsilon-greedy)

 Take action a, observe the reward r, and the next state s'

 Update Q(s, a) <- Q(s, a) + α * [r + γ * max(Q(s', a')) - Q(s, a)]

 s <- s'

 End of the episode steps loop

 End of the episodes loop

End

The Q-learning algorithm is a reinforcement learning technique where Q-values are updated based on observed

rewards and future estimates [6]. The agent explores the environment, chooses actions via an epsilon-greedy policy,

observes rewards, and iteratively updates its knowledge. This approach strengthens the agent's ability to make

optimal decisions over time [7].

4.2 Initialization of the Q-Learning Process

The initialization of Q-Learning involves initially setting the values of the Q-table, represented as 𝑄(𝑠, 𝑎), for each

state s and action a, along with learning parameters such as the learning rate  and the discount factor . This is

expressed as: [6]

𝑄(𝑠, 𝑎) ← 0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 (1)

Where 𝑆 is the set of states, and 𝐴 is the set of possible actions in the given context.

4.3 Detection of Attack Attempts or Patterns

The process of detecting attack attempts by Q-Learning can be based on specific metrics to assess the system's state.

If we consider a generic metric M evaluating state st at time t and a detection function f(M), the detection could be

formulated as follows: [7]

- 𝑀 = Metric evaluating the system state

- 𝑠𝑡 = System state at time t

- 𝑓(𝑀) = Detection function applied to metric 𝑀

In the context of attack detection, the function 𝑓(𝑀) can be expressed as:

𝑓(𝑀) = 𝐻(𝑀 − 𝑆) (2)

Vol-10 Issue-2 2024 IJARIIE-ISSN(O)-2395-4396

22710 www.ijariie.com 173

Where 𝑆 represents the threshold, and 𝐻 is the activation function (threshold function). If the metric 𝑀 surpasses

the threshold 𝑆, 𝑓(𝑀) will be 1, indicating an attack attempt. Otherwise, 𝑓(𝑀) will be 0.

Thus, the detection of attack attempts or patterns can utilize 𝑓(𝑀) to trigger specific responses when 𝑀 surpasses or

does not meet a predefined threshold, indicating an abnormal state or potentially an attack [8].

4.4 Key Generation Method Selection

The selection of action 𝑎𝑡, which is the key generation method at state 𝑠𝑡, is determined using the policy , which

can be defined as follows :

(𝑠𝑡) = arg 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡 , 𝑎) (3)

Where 𝑠𝑡 represents the current state at time t, 𝑎𝑡 is the action (key generation method) selected at time t, 𝑄(𝑠𝑡 , 𝑎)

represents the value in the Q-table for state st and action a, and arg 𝑚𝑎𝑥𝑎 denotes the action a that maximizes the

value in the Q-table for state st.

This equation determines the key generation method to be used at each step by choosing the one that maximizes the

predicted value in the Q-table for the current state [9].

4.5 Evaluation and update of the Q-Table

The evaluation of generated keys can be represented by a reward function R that assigns a value to each generated

key. This function assesses the robustness or quality of the produced key based on security criteria.

𝑅(𝑠𝑡 , 𝑎𝑡) = 𝜔1. 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1(𝑠𝑡 , 𝑎𝑡) + 𝜔2. 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛2(𝑠𝑡 , 𝑎𝑡) + 𝜔3. 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛3(𝑠𝑡 , 𝑎𝑡) (4)

In this formula, 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛1(𝑠𝑡 , 𝑎𝑡), 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛2(𝑠𝑡 , 𝑎𝑡), and 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛3(𝑠𝑡 , 𝑎𝑡) are the evaluations of specific

security criteria for the key generated at state 𝑠𝑡 with action 𝑎𝑡, and 𝜔1, 𝜔2, and 𝜔3 are the weights assigned to each

criterion respectively.

This reward is utilized to update the Q-table using the standard Q-learning update algorithm, which involves

adjusting the Q-value for state 𝑠𝑡 and action 𝑎𝑡 based on the obtained reward and the current values in the Q-table

[10]. The Q-table update can be performed using the Q-update formula 𝑄 [10].

La mise à jour de la table 𝑄 peut être réalisée en utilisant la formule de mise à jour 𝑄 :

𝑄(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼). 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼. [𝑅(𝑠𝑡 , 𝑎𝑡) + 𝛾. 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎)] (5)

Where 𝛼 is the learning rate controlling the extent to which new information replaces old Q-values, 𝛾 is the

discount factor determining the importance of long-term rewards compared to immediate rewards, 𝑠𝑡+1 represents

the next state, and a is the possible action at the next state.

This Q-table update is iterative and occurs after each key generation and evaluation, allowing Q-learning to adapt to

received rewards and improve the quality of decisions made when selecting key generation methods [11].

Vol-10 Issue-2 2024 IJARIIE-ISSN(O)-2395-4396

22710 www.ijariie.com 174

5. RESULTS
5.1 Progression of Q-Learning Q-Table Adaptation in Response to Cryptographic menaces

Fig -1: Evolution of Q-Learning Q-Table Adaptation Against Cryptographic menaces

The dynamic key exchange scheme refers to the periodic and proactive modification of cryptographic keys, thereby

reducing risks associated with potential compromise. Authenticity validation involves verifying the identity of the

parties, ensuring that only legitimate entities are involved in communication. Finally, intelligent protocol selection

dynamically adapts the choice of communication protocol based on context, optimizing security and real-time

performance. The upward trends in Q-table values for strategic actions such as "Dynamic Key Adaptation,"

"Authenticity Validation," and "Protocol Selection" highlight the continuous adaptability of Q-Learning to enhance

the security of digital exchanges. This consistent improvement denotes its ability to proactively adjust to potential

attacks.

5.2 Performance Comparison Against Attacks

Step 1: No attack. Normal key generation: generate_random_seq

Generated key: a@12KLpqw

Step 2: Key weakness attack detected. Parameter adjusted: 2

Key generation method: generate_weighted_random

Generated key: ACCCAACBCC

Step 3: No attack. Normal key generation: generate_random_seq

Generated key: b?34hjx !eV

Step 4: Fault injection attack detected.

Key generation method: generate_modulated_random

Generated key: rBV{E9W34:

Step 5: Brute force attack detected.

Key generation method: generate_random_seq

Generated key: j7HFsDKdFW

Step 6: Differential cryptanalysis attack detected.

Key generation method: generate_modulated_random

Generated key: vxgID3cM8k

Vol-10 Issue-2 2024 IJARIIE-ISSN(O)-2395-4396

22710 www.ijariie.com 175

Step 7: No attack. Normal key generation: generate_random_seq

Generated key: gL14PT#tyP

Step 8: Covert channel attack detected. Parameter adjusted: 2

Key generation method: generate_weighted_random

Generated key: ACCCACCCAB

Step 9: No attack. Normal key generation: generate_random_seq

Generated key: PO98%fge)t

Step 10: No attack. Normal key generation: generate_random_seq

Generated key: XO78%ghai%

Step 11: Brute force attack detected.

Key generation method: generate_random_seq

Generated key: a3N4l878Q7

Step 12: Attack detected. Parameter adjusted: 2

Key generation method: generate_weighted_random

Generated key: ACCBCCCACA

Step 13: No attack. Normal key generation: generate_random_seq

Generated key: UOtyw12Ly

Step 14: Private key compromise attack detected. Parameter adjusted: 0

Key generation method: generate_random_seq

Generated key: DyCYPls20

The results convincingly demonstrate the system's dynamic adaptive capability in the face of attacks. Detection of

an attack at step 2 leads to an adjustment of the system parameter, which then selects the key generation method

based on a weighted random sequence. This strategy aims to counter a random attack by generating complex keys.

When a fault injection attack is detected at step 4, the system adjusts again by choosing the random modulation

method.

5.3 Adaptation of Key Generation Methods in Response to Attacks

The stacked bar chart illustrates the reactivity rate of key generation methods at each stage of attack detection.

Fig -2: Key Generation Method Change in Response to Detected Attacks

Each method, represented by a distinct color (blue for generate_random_seq, green for generate_weighted_random,

and orange for generate_modulated_random), shows a 100% response to each attack, corresponding to a value of 1

Vol-10 Issue-2 2024 IJARIIE-ISSN(O)-2395-4396

22710 www.ijariie.com 176

on the graph. This result suggests that each method systematically changes in response to an attack, demonstrating

maximum responsiveness upon detection. Custom labels on the x-axis indicate different stages of the process, while

the y-axis is labeled as the 'Method Reactivity Rate,' emphasizing the methods' ability to quickly adjust their key

generation strategy in the presence of threats.

5.4 Performance Analysis in the Face of Attack Frequency Variations

Fig -3: Variation in Attack Frequency and Detection Rate

The results of the attack detection system can be interpreted by considering variations in attack frequency over

multiple iterations. When the attack frequency is relatively low (20%) during the initial iterations (iterations 1 to 50),

the system demonstrates a consistent ability to identify suspicious patterns or behaviors, even in periods of low

attack activity. In a later phase with a considerably higher attack frequency (80%) in subsequent iterations (iterations

51 to 100), the system maintains its robustness by effectively detecting attacks despite a significant increase in

frequency. Notably, the attack detection rate remains nearly constant, oscillating between 1 and 1.5, emphasizing the

stability and effectiveness of the system. This constancy in the attack detection rate, even in the face of significant

variations in attack frequency, reflects the system's ability to dynamically adjust its key generation methods in

response to detected attacks, demonstrating its resilience.

6. OBSERVATIONS
The results demonstrate the remarkable adaptability of the system to attacks, efficiently adjusting its parameters and

key generation methods in response to the detection of specific attacks. Frequent changes in key generation methods

indicate a dynamic adaptation strategy, strengthening the system's security. Even with a significant increase in the

attack frequency to 80%, the system maintains its detection capability, highlighting its robustness against substantial

increases in the number of attacks. In summary, the system exhibits effective strategic flexibility to counter various

cryptographic threats, enhancing its security in environments where attack frequencies may vary.

7. INTERPRETATIONS
The results highlight the remarkable ability of the system to strategically adjust to cryptographic attacks. Detecting

attacks early, the system adapts its key generation methods specifically, illustrating a proactive response to each

Vol-10 Issue-2 2024 IJARIIE-ISSN(O)-2395-4396

22710 www.ijariie.com 177

threat. The frequent changes in key generation methods reflect dynamic adaptation, strengthening system security.

Despite a significant increase in the frequency of attacks, the system maintains its detection capability,

demonstrating its robustness. These results confirm the reliability of the system in realistic scenarios, establishing a

solid foundation for its application in critical environments requiring effective protection against cryptographic

threats.

8. CONCLUSION AND PERSPECTIVES
The conclusion underscores the effectiveness of the adaptive system based on Q-learning in cryptographic key

generation, with successful strategic adjustments in response to simulated attacks. The results highlight the

importance of adaptability and diversification of methods to enhance the security of digital exchanges. Future

perspectives could involve exploring more advanced strategies, integrating anomaly detection mechanisms, and

optimizing learning parameters for finer decision-making.

9. REFERENCES
[1]. H. A. Atee, N. Noor, R. Ahmad, A. K. I. Yasar (janvier 2026). "Machine Learning Based Key Generating for

Cryptography". Middle Technical University, Universiti Teknologo Malaysia, Al Muthanna University. Article

publié sur ResearchGate.

[2]. S. Pamarthi, R. Narmadha (18 novembre 2021). "Adaptive Key Management-Based Cryptographic Algorithm

for Privacy Preservation in Wireless Mobile Adhoc Networks for IoT Applications". SpringerLink.

[3]. J.S. Prasath, D. Jose, B. Rammyaa, R. Pandian (2022). "Dynamic Key Generation Mechanism to Strengthen the

Data Security". Article publié sur IEEE.

[4]. R. S. Sutton, A. G. Barto (2018). « Reinforcement Learning: An Introduction ». MIT Press.

[5]. I. Goodfellow, Y. Bengio, A. Courville (2016). «Deep Learning ». MIT Press.

[6]. D. R. Stinson (2006). « Cryptography: Theory and Practice ». CRC Press.

[7]. S. J. Russell, P. Norvig (2010). « Artificial Intelligence: A Modern Approach ». Pearson.

[8]. M. Abadi (2016). « Deep Learning with Differential Privacy ». ACM Transactions on Machine Learning

(TOMM).

[9]. D. Boneh, V. Shoup (1997). « Fast Variants of RSA ». International Conference on the Theory and Application

of Cryptology and Information Security.

[10]. G. A. Rummery, M. Niranjan (1994). « On-line Q-learning using Connectionist Systems ». Cambridge

University Engineering Department, Internal Report.

[11]. H. Zhang (2019). «A Survey on Reinforcement Learning in Blockchain: Toward Blockchain 3.0 ». IEEE

Access.

