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ABSTRACT 

 

Legendre’s polynomial is an important part of differential equation which divide in to two parts, they are first kind and 
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1. Introduction 

 
    The Legendre differential equation arises in problems such as the flow of an ideal fluid past a sphere, the 

determination of the electric field due to a charged sphere, and the determination of the temperature distribution in a 

sphere given its surface temperature.  

 Here we explained Legendre’s equation in second section, in third section, polynomial of Legendre 

illustrated and in fourth section, we discussed about generating function and orthogonal property of Legendre 

polynomial [2]. 
 

2. Legendre’s equation  

 
        The differential equqtion of the form (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0 ⋯ ⋯ ⋯ (1) is called  

Legendre’s differential or simply Legendre’s equation, where 𝑛 is a constant.[3]. 
 

We now solve (1) in series of descending power of 𝑥. Let the series solution of (1) be 

𝑦 = ∑ 𝑐𝑚𝑥𝑘−𝑚∞
𝑚=0 ,       where       𝑐 ≠ 0 ⋯ ⋯ ⋯ (2)   

Differentiating (2) and then putting the values of 𝑦, 𝑦′ and 𝑦′′ into (1), we have   

(1 − 𝑥2) ∑ 𝑐𝑚(𝑘 − 𝑚)(𝑘 − 𝑚 − 1)𝑥𝑘−𝑚−2

∞

𝑚=0

− 2𝑥 ∑ 𝑐𝑚(𝑘 − 𝑚)𝑥𝑘−𝑚−1

∞

𝑚=0

+ 𝑛(𝑛 + 1) ∑ 𝑐𝑚𝑥𝑘−𝑚

∞

𝑚=0

= 0 (𝑜𝑟)  

∑ 𝑐𝑚(𝑘 − 𝑚)(𝑘 − 𝑚 − 1)𝑥𝑘−𝑚−2

∞

𝑚=0

− ∑ 𝑐𝑚{(𝑘 − 𝑚)(𝑘 − 𝑚 − 1) + 2(𝑘 − 𝑚) − 𝑛(𝑛 + 1)}𝑥𝑘−𝑚 = 0

∞

𝑚=0

⋯ ⋯ (3) 

 

Now, (𝑘 − 𝑚)(𝑘 − 𝑚 − 1) + 2(𝑘 − 𝑚) − 𝑛(𝑛 + 1) 

      = (𝑘 − 𝑚)2 − (𝑘 − 𝑚) + 2(𝑘 − 𝑚) − 𝑛(𝑛 + 1) = (𝑘 − 𝑚)2 − 𝑛2 + (𝑘 − 𝑚) − 𝑛 

      = (𝑘 − 𝑚 + 𝑛)(𝑘 − 𝑚 − 𝑛) + (𝑘 − 𝑚 − 𝑛) = (𝑘 − 𝑚 − 𝑛)(𝑘 − 𝑚 + 𝑛 + 1). 
Hence (3) may be re-write as   

∑ 𝑐𝑚(𝑘 − 𝑚)(𝑘 − 𝑚 − 1)𝑥𝑘−𝑚−2

∞

𝑚=0

− ∑ 𝑐𝑚(𝑘 − 𝑚 − 𝑛)(𝑘 − 𝑚 + 𝑛 + 1)𝑥𝑘−𝑚 = 0

∞

𝑚=0

⋯ ⋯ ⋯ (4) 
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(4) is an identity. To get the indicial equation, we equate to zero the coefficient of the highest power of 𝑥, namely  
𝑥𝑘  in (4) and optain 𝑐0(𝑘 − 𝑚)(𝑘 + 𝑛 + 1) = 0 (or) (𝑘 − 𝑚)(𝑘 + 𝑛 + 1) = 0 𝑎𝑠  𝑐0 ≠ 0 ⋯ ⋯ ⋯ (5) 
 

So the root of (5) are 𝑘 = 𝑛, −(𝑛 + 1). They are unequal and differ by an integer. The next lower power of 𝑥 is 

𝑘 − 1. So we equate to zero the coefficient of 𝑥𝑘−1 in (4) and obtain  

 

𝑐1(𝑘 − 1 − 𝑛)(𝑘 + 𝑛) = 0 ⋯ ⋯ ⋯ (6) 

 

For 𝑘 = 𝑛  and −(𝑛 + 1) , neither (𝑘 − 1 − 𝑛)  nor (𝑘 + 𝑛)  is zero. So from (6) , 𝑐1 = 0.  Finally, 

equating to zero the coefficient of 𝑥𝑘−𝑚 in (4), we have  

𝑐𝑚−2(𝑘 − 𝑚 + 2)(𝑘 − 𝑚 + 1) − 𝑐𝑚(𝑘 − 𝑚 − 𝑛)(𝑘 − 𝑚 + 𝑛 + 1) = 0 

𝑐𝑚 =
(𝑘 − 𝑚 + 2)(𝑘 − 𝑚 + 1)

(𝑘 − 𝑚 − 𝑛)(𝑘 − 𝑚 + 𝑛 + 1)
𝑐𝑚−2. ⋯ ⋯ ⋯ (7)  

Putting 𝑚 = 3, 5, 7, … in (7) and noting that 𝑐1 = 0, we have  

𝑐1 = 𝑐3 = 𝑐5 = 𝑐7 = ⋯ = 0. ⋯ ⋯ ⋯ (8) 

wich hold good for both 𝑘 = 𝑛 and 𝑘 = −(𝑛 + 1).  

 To obtain 𝑐2, 𝑐4, 𝑐6, … etc, we consider two cases 

Case𝐈. When 𝑘 = 𝑛. Then, (7) become 𝑐𝑚 = −
(𝑛−𝑚+2)(𝑛−𝑚+1)

𝑚(2𝑛−𝑚+)
𝑐𝑚−2 … … … (9) 

Putting 𝑚 = 2, 4, 6, … in (9), we have  

𝑐2 = −
𝑛(𝑛 − 1)

2(2𝑛 − 1)
𝑐0,   𝑐4 = −

(𝑛 − 2)(𝑛 − 3)

4(2𝑛 − 3)
𝑐2 = −

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

2 ⋅ 4 ⋅ (2𝑛 − 1)(2𝑛 − 3)
𝑐0 

And so on. Re-write (2), we have for 𝑘 = 𝑛 

𝑦 = 𝑐0𝑥𝑛 + 𝑐1𝑥𝑛−1 + 𝑐2𝑥𝑛−2 + 𝑐3𝑥𝑛−3 + 𝑐4𝑥𝑛−4 + ⋯       … … … (10) 

Using (8) and the above values of 𝑐2, 𝑐4, 𝑐6, …etc., (10) becomes (after replacing 𝑐0 by 𝑎)  

𝑦 = 𝑎 [𝑥𝑛 −
𝑛(𝑛 − 1)

2(2𝑛 − 1)
𝑥𝑛−2 +

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

2 ⋅ 4 ⋅ (2𝑛 − 1)(2𝑛 − 3)
𝑥𝑛−4 − ⋯ ] . … … … (11) 

Case𝐈𝐈. When 𝑘 = −(𝑛 + 1). Then, (7) becomes 𝑐𝑚 =
(𝑛+𝑚−1)(𝑛+𝑚)

𝑚(2𝑛+𝑚+1)
𝑐𝑚−2 … … … (12)  

Putting 𝑚 = 2, 4, 6, … in (12), we have  

  

𝑐2 = −
(𝑛 + 1)(𝑛 + 2)

2(2𝑛 + 3)
𝑐0,   𝑐4 = −

(𝑛 + 3)(𝑛 + 4)

4(2𝑛 + 5)
𝑐2 = −

𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

2 ⋅ 4 ⋅ (2𝑛 + 3)(2𝑛 + 5)
𝑐0 

and so on. For 𝑘 = −(𝑛 + 1), (2) gives  

 

𝑦 = 𝑐0𝑥−𝑛−1 + 𝑐1𝑥−𝑛−2 + 𝑐2𝑥−𝑛−3 + 𝑐3𝑥−𝑛−4 + 𝑐4𝑥−𝑛−5 + ⋯       … … … (13) 

Using (8) and above values of 𝑐2, 𝑐4, 𝑐6, … etc., (13) becomes   

𝑦 = 𝑏 [𝑥−𝑛−1 −
(𝑛 + 1)(𝑛 + 2)

2(2𝑛 + 3)
𝑥−𝑛−3 +

𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

2 ⋅ 4 ⋅ (2𝑛 + 3)(2𝑛 + 5)
𝑥−𝑛−5 + ⋯ ] . … … … (14) 

 

Thus, two independent solution of of (1) are given by (11) and (14). If we take 𝑎 = [1 ⋅ 3 ⋅ 5 ⋅⋅⋅
2𝑛−1

𝑛!
, the 

solution (11) is denoted by 𝑝𝑛(𝑥) and is called Legendre’s function of the first kind or Legendre’s polynomial of 

degree 𝑛. Notice that (11) is terminating series and so it gives rise to a polynomial of degree 𝑛. Thus 𝑝𝑛(𝑥) is a 

solution of (1), Again, if we take 𝑏 =
𝑛

[1⋅3⋅5⋅⋅⋅(2𝑛+1)]
 the solution (14) is denoted by 𝑄𝑛(𝑥) and is called Legendre’s 

function of the second kind. Since 𝑛 is positive integer, (14) is an infinite or non-terminating series and hence 

𝑄𝑛(𝑥) is not a polynomial. Thus 𝑝𝑛(𝑥) and 𝑄𝑛(𝑥) are two linearly independent solution of (1). Hence the general 

solution of (1) is 𝑦 = 𝐴𝑝𝑛(𝑥) + 𝐵𝑄𝑛(𝑥), where 𝐴 and 𝐵 are arbitrary constants.   . … … … (15) 

 

Remark 1. When there is no confusing regarding the variable 𝑥, we shall use a shorter notation 𝑃𝑛 for 

𝑝𝑛(𝑥) and 𝑝𝑛
′  for 

𝑑𝑝𝑛(𝑥)

𝑑𝑥
, 𝑄𝑛 for 𝑄𝑛(𝑥) and 𝑄𝑛

′  for 
𝑑𝑄𝑛(𝑥)

𝑑𝑥
 etc  

 

2.1 Another form of Legendre’s polynomial 𝒑𝒏(𝒙)  

Legender’s polynomial of degree 𝑛 is denoted and define by 
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𝑝𝑛(𝑥) =
1⋅3⋅5⋅…⋅(2𝑛−1)

𝑛!
[𝑥𝑛 −

𝑛(𝑛−1)

2(2𝑛−1)
𝑥𝑛−2 +

𝑛(𝑛−1)(𝑛−2)(𝑛−3)

2⋅4⋅(2𝑛−1)(2𝑛−3)
𝑥𝑛−4 − ⋯ ] . … … … (1)  

We now re-write (1) in a compact form. The general term of polynomial (1) is given by  
1⋅3⋅5⋅…⋅(2𝑛−1)

𝑛!
⋅ (−1)𝑟  

𝑛(𝑛−1)…(𝑛−2𝑟+1)

2⋅4⋅2𝑟(2𝑛−1)(2𝑛−3)…(2𝑛−2𝑟+1)
𝑥𝑛−2𝑟 … … … (2)  

Now, 1 ⋅ 3 ⋅ 5 ⋅ … ⋅ (2𝑛 − 1) =
1⋅3⋅5⋅…⋅(2𝑛−1)⋅2𝑛

2⋅4⋅6⋅…⋅2𝑛 
=

(2𝑛)!

(2⋅1)(2⋅2)(2⋅3)…(2⋅𝑛)
=

(2𝑛)!

2𝑛⋅1⋅2⋅3 … 𝑛
=

(2𝑛)!

2𝑛⋅𝑛!
… … … (3)  

Also, 𝑛(𝑛 − 1) … . (𝑛 − 2𝑟 + 1) =
𝑛(𝑛−1)(𝑛−2𝑟+1)(𝑛−2𝑟)(𝑛−2𝑟−1)…3⋅2⋅1

(𝑛−2𝑟)(𝑛−2𝑟−1)⋅…⋅3⋅2⋅1
=

𝑛!

(𝑛−2𝑟)!
… … … (4)  

And   2 ⋅ 4 ⋅ 6 … 2𝑟 = (2 ⋅ 1)(2 ⋅ 2)(2 ⋅ 3) … (2 ⋅ 𝑟) = 2𝑟 ⋅ 𝑟! … … … (5) 

Finally, (2𝑛 − 1)(2𝑛 − 3) … (2𝑛 − 𝑟 + 1) =
(2𝑛)(2𝑛−1)(2𝑛−3)…(2𝑛−2𝑟+2)(2𝑛−2𝑟+1)

(2𝑛)(2𝑛−2)(2𝑛−4)…(2𝑛−2𝑟+2)
×

(2𝑛−2𝑟)!

(2𝑛−2𝑟)!
 

=
(2𝑛)(2𝑛 − 1)(2𝑛 − 3) … (2𝑛 − 2𝑟 + 2)(2𝑛 − 2𝑟 + 1)(2𝑛 − 2𝑟)(2𝑛 − 2𝑟 − 1) … 3 ⋅ 2 ⋅ 1

2 ⋅ 𝑛 ⋅ 2(𝑛 − 1)(𝑛 − 2) … 2(𝑛 − 𝑟 + 1)(2𝑛 − 2𝑟)!
 

         =
(2𝑛)!

2𝑛⋅𝑛(𝑛−1)(𝑛−2)…(𝑛−𝑟+1)(2𝑛−2𝑟)!
=

(2𝑛)!

2𝑛(2𝑛−2𝑟)!
×

(𝑛−𝑟)(𝑛−𝑟−1)…3⋅2⋅1

𝑛(𝑛−1)(𝑛−2)…(𝑛−𝑟)(𝑛−𝑟−1)…3⋅2⋅1
 

         = 
(2𝑛)!

2𝑛(2𝑛−2𝑟)!
×

(𝑛−𝑟)!

𝑛!
… … … (6) 

  

 Using (3), (4), (5) and (6), the general term (2) becomes 
(2𝑛)!

2𝑛 ⋅ 𝑛!
(−1)𝑟 ⋅

𝑛!

(𝑛 − 2𝑟)!
×

1

2𝑟𝑟!
×

2𝑛(2𝑛 − 2𝑟)! 𝑛!

(2𝑛)! (𝑛 − 𝑟)!
𝑥𝑛−2𝑟 

i.e                     = (−1)𝑟 (2𝑛−2𝑟)!

2𝑛𝑟!(𝑛−𝑟)!(𝑛−2𝑟)!
𝑥𝑛−2𝑟 … … … (7)  

  

 Since (1) is polynomial of degree 𝑛, 𝑟 must be chosen so that 𝑛 − 2𝑟 ≥ 0, i.e., 𝑟 ≤
𝑛

2
⋅  

Thus, if 𝑛 is even, 𝑟goes from 0 to 
1

2
𝑛 while if 𝑛 is odd 𝑟 goes from 0 to 

1

2
(𝑛 − 1); that is, for the complete 

polynomial (1), 𝑟 goes from 0 to [
1

2
𝑛], where  

[
1

2
𝑛] = {

𝑛

2
, 𝑖𝑓 𝑛 = 2𝑘

𝑛 − 1

2
, 𝑖𝑓 𝑛 = 2𝑘 − 1

 

Hence the Legendre’s polynomial of degree 𝑛 is given by  

𝑝𝑛(𝑥) = ∑(−1)𝑟

[
𝑛

2
]

𝑟=0

(2𝑛 − 2𝑟)!

2𝑟𝑟! (𝑛 − 𝑟)! (𝑛 − 2𝑟)!
𝑥𝑛−2𝑟 … … … (8) [5].  

 

3. Kinds of Legendre’s function. here is two kind of Legendre’s function as follows:  

3.1 Legendre’s function of the first kind or Legendre’s polynomial of degree 𝒏. 
the solution of Legendre’s equation is called Legendre’s function When 𝑛 is positive integer and 

𝑎 =
1⋅3⋅5(2𝑛−1)

𝑛!
, the solution (11) is denoted by 𝑝𝑛(𝑥) and is called Legendre’s function of the first kind. 

∴   𝑝𝑛(𝑥) =
1⋅3⋅5(2𝑛−1)

𝑛!
[𝑥𝑛 −

𝑛(𝑛−1)

2(2𝑛−1)
𝑥𝑛−2 +

𝑛(𝑛−1)(𝑛−2)(𝑛−3)

2⋅4⋅(2𝑛−1)(2𝑛−3)
𝑥𝑛−4 − ⋯ ] … … … (1)  

 𝑝𝑛(𝑥) a terminating series and gives what are called Legendre’s polynomials for different values of 𝑛. We can write 

𝑝𝑛(𝑥) = ∑ (−1)𝑟
[
𝑛

2
]

𝑟=0

(2𝑛−2𝑟)!

2𝑟𝑟!(𝑛−𝑟)!(𝑛−2𝑟)!
𝑥𝑛−2𝑟 where,  

[
1

2
𝑛] = {

𝑛

2
, 𝑖𝑓 𝑛 = 2𝑘

𝑛 − 1

2
, 𝑖𝑓 𝑛 = 2𝑘 − 1

 [3]. 

3.2 Legendre’s function of the second kind. This is denoted and define by 

𝑦 =
𝑛!

1⋅3⋅5⋅…⋅(2𝑛+1)
[𝑥−(𝑛+1) +

(𝑛+1)(𝑛+2)

2(2𝑛+3)
𝑥−(𝑛+3) +

𝑛(𝑛+1)(𝑛+2)(𝑛+3)(𝑛+4)

2⋅4⋅(2𝑛+3)(2𝑛+5)
𝑥−(𝑛+5) + ⋯ ] . … … … (2)  

Example 3.2.1 if 𝑛 = 0, 1, 2, 3, 4 𝑎𝑛𝑑 5 in result (1), then find 𝑝0(𝑥), 𝑝1(𝑥), 𝑝2(𝑥), 𝑝3(𝑥), 𝑝4(𝑥) and 𝑝5(𝑥) 

Soluution. 

 𝑝0(𝑥) =
1

0!
𝑥0 = 1 ,  
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 𝑝1(𝑥) =
1

1!
𝑥1 = 𝑥,   

 𝑝2(𝑥) =
1⋅3

2!
[𝑥2 −

2⋅1

2⋅3
𝑥0] =

1

2
(3𝑥2 − 1),  

𝑝3(𝑥) =
1⋅3⋅5

3!
[𝑥3 −

3⋅2

2⋅5
𝑥1] =

1

5
(5𝑥3 − 3𝑥),  

𝑝4(𝑥) =
1⋅3⋅5⋅7

4!
[𝑥4 −

4⋅3

2⋅7
𝑥2 +

4⋅3⋅2⋅1

2⋅4⋅7⋅5
𝑥0] =

1

8
(35𝑥4 − 30𝑥2 + 3)  and  

𝑝5(𝑥) =
1⋅3⋅5⋅7⋅9

5!
[𝑥5 −

5⋅4

2⋅9
𝑥3 +

5⋅4⋅3⋅2⋅1

2⋅4⋅9⋅7
𝑥1] =

1

8
(63𝑥5 − 70𝑥3 + 15𝑥). 

 

Example 3.2.2 Express 2 − 3𝑥 + 4𝑥2 in terms of Legendre’s polynomials. 

Solution. We have 1 = 𝑝0(𝑥), 𝑝1(𝑥) = 𝑥, 𝑝2(𝑥) =
1

2
(3𝑥2 − 1) ⟹ 𝑥2 =

[2𝑝2(𝑥)+1]

3
… … …(1) 

Now, 2 − 3𝑥 + 4𝑥2 = 2𝑝0(𝑥) − 3𝑝1(𝑥) +
4

3
× [2𝑝2(𝑥) + 1], by (1)  

                 = 2𝑝0(𝑥) − 3𝑝1(𝑥) +
8

3
× 𝑝2(𝑥) +

4

3
× 𝑝0(𝑥) 

                 =
10

3
× 𝑝0(𝑥) − 3𝑝1(𝑥) +

8

3
× 𝑝2(𝑥) 

Example 3.2.3 Express 𝑥4 + 2𝑥3 + 2𝑥2 − 𝑥 − 3  in terms of Legendre’s polynomials. 

Solutio. We have  

𝑝0(𝑥) = 1,  

 𝑝1(𝑥) = 𝑥,   

 𝑝2(𝑥) =
1

2
(3𝑥2 − 1),  

𝑝3(𝑥) =
1

5
(5𝑥3 − 3𝑥) and 

𝑝4(𝑥) =
1

8
(35𝑥4 − 30𝑥2 + 3). 

⟹ 𝑥4 =
8

35
× 𝑝4(𝑥) +

6

7
× 𝑥2 −

3

35
, … … … (1) 

   𝑥3 =
2

5
𝑝3(𝑥) +

3

5
𝑥, … … … (2) 

   𝑥2 =
2

3
× 𝑝2(𝑥) +

1

3
… … … (3) 

   𝑥 = 𝑝1(𝑥) and 1 = 𝑝0(𝑥) … … … (4) 

Now, 𝑥4 + 2𝑥3 + 2𝑥2 − 𝑥 − 3 = 𝑥4 + 2𝑥3 + 2𝑥2 − 𝑥 − 3 + 2 [
2

5
𝑝3(𝑥) +

3

5
𝑥] + 2𝑥2 − 𝑥 − 3 

           =
8

35
𝑝4(𝑥) +

4

5
𝑝3(𝑥) +

20

7
𝑥2 +

1

5
𝑥 −

108

35
 

                                          =
8

35
𝑝4(𝑥) +

4

5
𝑝3(𝑥) +

20

7
[

2

3
× 𝑝2(𝑥) +

1

3
] +

1

5
𝑝1(𝑥) −

108

35
  

Using (2), (3) 𝑎𝑛𝑑 (4) we get  

=
8

35
𝑝4(𝑥) +

4

5
𝑝3(𝑥) +

40

21
× 𝑝2(𝑥) +

1

5
𝑝1(𝑥) −

224

105
𝑝0(𝑥) 

 

 

4. Generating for Legendre polynomials. 

  

Theorem 4.1. Tshow that (1 − 2𝑥𝑧 + 𝑧2)−
1

2 = ∑ 𝑧𝑛𝑝𝑛(𝑥), |𝑥| ≤ 1,   |𝑧| ≤ 1∞
𝑛=0  or to show that 𝑝𝑛(𝑥) is the 

coefficient of 𝑧𝑛 in the exapansion of (1 − 2𝑥𝑧 + 𝑧2)−
1

2 in assending powers of 𝑧. 

Note: (1 − 2𝑥𝑧 + 𝑧2)−
1

2 is called generating function for Legendre polynomial 𝑝𝑛(𝑥)  

Proof: Since |𝑧| ≤ 1 and |𝑥| ≤ 1, we have 

(1 − 2𝑥𝑧 + 𝑧2)−
1

2 = [1 − 𝑧(2𝑥 − 𝑧)]−
1

2   

     = 1 +
1

2
𝑧(2𝑥 − 𝑧) +

1⋅3

2⋅4
𝑧2(2𝑥 − 𝑧)2 + ⋯ +

1⋅3⋅…⋅(2𝑛−3)

2⋅4⋅…⋅(2𝑛−2)
𝑧𝑛−1(2𝑥 − 𝑧)𝑛−1 +

1⋅3⋅…⋅(2𝑛−1)

2⋅4⋅…⋅2𝑛
𝑧𝑛(2𝑥 − 𝑧)𝑛 … … (1) 

Now, the coefficient of 𝑧𝑛in 
1⋅3⋅…⋅(2𝑛−1)

2⋅4⋅…⋅2𝑛
𝑧𝑛(2𝑥 − 𝑧)𝑛=

1⋅3⋅…⋅(2𝑛−1)

2⋅4⋅…⋅2𝑛
(2𝑥)𝑛 =

1⋅3⋅…⋅(2𝑛−1)⋅2𝑛⋅𝑥𝑛

(2⋅1)(2⋅2)(2⋅3)⋅…⋅(2⋅𝑛)
=

1⋅3⋅…⋅(2𝑛−1)

2𝑛⋅𝑛!
2𝑛 ⋅ 𝑥𝑛  

=
1⋅3⋅…⋅(2𝑛−1)

𝑛!
𝑥𝑛 … … … (2)  

Again, the coefficient of 𝑧𝑛 in 
1⋅3⋅…⋅(2𝑛−3)

2⋅4⋅…⋅(2𝑛−2)
𝑧𝑛−1(2𝑥 − 𝑧)𝑛−1 =

1⋅3⋅…⋅(2𝑛−3)

(2⋅1)(2⋅2)⋅…⋅2(𝑛−1)
{−(𝑛 − 1)(2𝑥)𝑛−2} 
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=
1⋅3⋅…⋅(2𝑛−3)

2𝑛⋅1⋅2⋅3⋅…⋅(𝑛−1)

(2𝑛−1)

𝑛
 

𝑛

(2𝑛−1)
[(𝑛 − 1)2𝑛−2 × 𝑥𝑛 − 2], on multiplying and dividing by 

2𝑛−1

𝑛
  

1 ⋅ 3 ⋅ … ⋅ (2𝑛 − 1)

𝑛!

𝑛(𝑛 − 1)

2(2𝑛 − 1)
𝑥𝑛−2 … … … (3) 

And so on. Using (2) and (3) …. We see that the coefficient of 𝑧𝑛 in the expansion of (1 − 2𝑥𝑧 + 𝑧2)−
1

2 namely 

(1) is given by 
1⋅3⋅5(2𝑛−1)

𝑛!
[𝑥𝑛 −

𝑛(𝑛−1)

2(2𝑛−1)
𝑥𝑛−2 +

𝑛(𝑛−1)(𝑛−2)(𝑛−3)

2⋅4⋅(2𝑛−1)(2𝑛−3)
𝑥𝑛−4 − ⋯ ] i.e., 𝑝𝑛(𝑥), by definition of Legendre 

polynomial. 

 

 We find that 𝑝1(𝑥), 𝑝2(𝑥), … will be the coefficient of 𝑧, 𝑧2, … in the expansion of (1 − 2𝑥𝑧 + 𝑧2)−
1

2. 

Thuse, we may write (1 − 2𝑥𝑧 + 𝑧2)−
1

2 = 1 + 𝑧𝑝1(𝑥) + 𝑧2𝑝2(𝑥) + ⋯ + 𝑧𝑛𝑝𝑛(𝑥) + ⋯ or  

(1 − 2𝑥𝑧 + 𝑧2)−
1

2 = ∑ 𝑧𝑛𝑝𝑛(𝑥)∞
𝑛=0 .  

Example 4.1 prove that: 

1 +
1

2
𝑝1(𝑐𝑜𝑠𝜃) +

1

3
𝑝2(𝑐𝑜𝑠𝜃) + ⋯ = 𝑙𝑜𝑔 [

 (1 + 𝑠𝑖𝑛
1

2
𝜃)

𝑠𝑖𝑛
1

2
𝜃

] 

Solution. From the generating function, (1 − 2𝑥𝑧 + 𝑧2)−
1

2 = ∑ 𝑧𝑛𝑝𝑛(𝑥)∞
𝑛=0 … … … (1) 

Integrating (1) w.r.t 𝑧 from 0 to 1,  

∑ ∫ 𝑧𝑛𝑝𝑛(𝑥)𝑑𝑧
1

0

∞

𝑛=0

= ∫
𝑑𝑧

√1 − 2𝑥𝑧 + 𝑧2

1

0

… … … (2) 

Replacing 𝑥 by 𝑐𝑜𝑠𝜃 on both sides, (2) gives  

 

∑ 𝑝𝑛(𝑐𝑜𝑠𝜃)

∞

𝑛=0

∫ 𝑧𝑛𝑑𝑧
1

0

= ∫
𝑑𝑧

√1 − 2𝑥𝑧 + 𝑧2

1

0

 

  ∑ 𝑝𝑛(𝑐𝑜𝑠𝜃)∞
𝑛=0 [

𝑧𝑛+1

𝑛+1
]

0

1

= ∫
𝑑𝑧

√[(𝑧−𝑐𝑜𝑠𝜃)2+𝑠𝑖𝑛2𝜃]

1

0
        

or ∑
𝑝𝑛(𝑐𝑜𝑠𝜃

𝑛+1
∞
𝑛=0 = [log {(𝑧 − 𝑐𝑜𝑠𝜃) + √[(𝑧 − 𝑐𝑜𝑠𝜃)2 + 𝑠𝑖𝑛2𝜃]}]

0

1

  

= log {(1 − 𝑐𝑜𝑠𝜃) + √[(1 − 𝑐𝑜𝑠𝜃)2 + 𝑠𝑖𝑛2𝜃]} − 𝑙𝑜𝑔(1 − 𝑐𝑜𝑠𝜃)  

= log {(1 − 𝑐𝑜𝑠𝜃) + √2(1 − 𝑐𝑜𝑠𝜃)} − log(1 − 𝑐𝑜𝑠𝜃) 

= log
(1 − 𝑐𝑜𝑠𝜃) + √2√1 − cos 𝜃

1 − 𝑐𝑜𝑠𝜃
= log

√(1 − 𝑐𝑜𝑠𝜃)√(1 − 𝑐𝑜𝑠𝜃) + √2√1 − cos 𝜃

√(1 − 𝑐𝑜𝑠𝜃)√(1 − 𝑐𝑜𝑠𝜃)
  

= log
√(1 − 𝑐𝑜𝑠𝜃) + √2

√(1 − 𝑐𝑜𝑠𝜃)
= log

√(2 sin2 1

2
𝜃) + √2

√(2 sin2 1

2
𝜃)

= 𝑙𝑜𝑔
(1 + 𝑠𝑖𝑛

1

2
𝜃)

𝑠𝑖𝑛
1

2
𝜃

 

∴   
𝑝0(𝑐𝑜𝑠𝜃)

1
+

1

2
𝑝1(𝑐𝑜𝑠𝜃) +

1

3
𝑝2(𝑐𝑜𝑠𝜃) + ⋯ = 𝑙𝑜𝑔

 (1 + 𝑠𝑖𝑛
1

2
𝜃)

𝑠𝑖𝑛
1

2
𝜃

 

Or  

1 +
1

2
𝑝1(𝑐𝑜𝑠𝜃) +

1

3
𝑝2(𝑐𝑜𝑠𝜃) + ⋯ = 𝑙𝑜𝑔

 (1 + 𝑠𝑖𝑛
1

2
𝜃)

𝑠𝑖𝑛
1

2
𝜃

 

Example 4.2 Prove that: 

(𝑖) ⋅  𝑝1(1) = 1 

(𝑖𝑖) ⋅ 𝑝𝑛(−1) = (−1)𝑛 

(𝑖𝑖𝑖) ⋅ 𝑝𝑛
′ (1) =

1

2
𝑛(𝑛 + 1). 

(𝑖𝑣) ⋅ 𝑝𝑛
′ (−1) = (−1)𝑛−1 ×

1

2
𝑛(𝑛 + 1). 
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(𝑣) ⋅ 𝑝𝑛(−𝑥) = (−1)𝑛𝑝𝑛(𝑥). Deduce 𝑝𝑛(−1) = (−)𝑛 . 

Solution. The generating function formula is (1 − 2𝑥𝑧 + 𝑧2)−
1

2 = ∑ 𝑧𝑛𝑝𝑛(𝑥), |𝑥| ≤ 1,   |𝑧| ≤ 1∞
𝑛=0 … … … (1) 

part (ⅈ) ⋅ Putting 𝑥 = 1 in (1), we get  

 

(1 − 2𝑧 + 𝑧2)−
1

2 = ∑ 𝑧𝑛𝑝𝑛(1),∞
𝑛=0   or (1 − 𝑧)−1 = ∑ 𝑧𝑛𝑝𝑛(1).  ∞

𝑛=0  
 

Since |𝑧| ≤ 1, the binomial theorem can be used for expansion of (1 − 𝑧)−1. 

 

∴      1 − 𝑧 + 𝑧2 − ⋯ + (−1)𝑛𝑧𝑛 + ⋯ = ∑ 𝑧𝑛𝑝𝑛(1).

∞

𝑛=0

… … … (2) 

Equating the coefficient of 𝑧𝑛 from both sides, (2) gives 𝑝𝑛(1) = 1  

 

Part (ⅈⅈ) ⋅ Putting 𝑥 = −1 in (1), we have as before  

 

(1 + 2𝑧 + 𝑧2)−
1

2 = ∑ 𝑧𝑛𝑝𝑛(−1),∞
𝑛=0   or (1 − 𝑧)−1 = ∑ 𝑧𝑛𝑝𝑛(−1).  ∞

𝑛=0  

 

Or      1 − 𝑧 + 𝑧2 − ⋯ + (−1)𝑛𝑧𝑛 + ⋯ = ∑ 𝑧𝑛𝑝𝑛(−1).∞
𝑛=0 … … … (3)  

 

Equating the coefficient of 𝑧𝑛 from both sides, (3) gives 𝑝𝑛(−1) = (−1)𝑛 . 
 

Part(ⅈⅈⅈ) ⋅ Since 𝑝𝑛(𝑥) satisfies Legendre’s equation (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0, we get  
(1 − 𝑥2)𝑝𝑛

′′(𝑥) − 2𝑥𝑝𝑛
′ (𝑥) + 𝑛(𝑛 + 1)𝑝𝑛(𝑥) = 0 … … … (4)  

Putting 𝑥 = 1 in (4) and using 𝑝𝑛(1) = 1, we get  

0 − 2𝑝𝑛
′ (1) + 𝑛(𝑛 + 1) = 0 or 𝑝𝑛

′ (1) =
1

2
𝑛(𝑛 + 1).  

 

Part (ⅈ𝒗). Putting 𝑥 = −1 in (4) and using 𝑝𝑛(−1) = (−1)𝑛 , we get  

0 + 2pn
′ (−1) + 𝑛(𝑛 + 1)(−1)𝑛 = 0  or  𝑝𝑛

′ (−1) = −(−1)𝑛 ×
1

2
𝑛(𝑛 + 1).  

Or 𝑝𝑛
′ (−1) = (−1) = (−1)𝑛−1 ×

1

2
𝑛(𝑛 + 1)    [∵  −(−1)𝑛 = −(−1)𝑛−1(−1) = (−1)𝑛−1 

 

Part (𝒗). Replace 𝑥 by – 𝑥 in (1), (1 + 2𝑥𝑧 + 𝑧2)−
1

2 = ∑ 𝑧𝑛𝑝𝑛(−𝑥) ∞
𝑛=0 … … … (5)  

Next, replacing 𝑧 by – 𝑧 in (1), (1 + 2𝑥𝑧 + 𝑧2)−
1

2 = ∑ (−𝑧)𝑛𝑝𝑛(𝑥) ∞
𝑛=0 … … … (6) 

From (5) and (6),             ∑ 𝑧𝑛𝑝𝑛(−𝑥) = ∑ (−𝑧)𝑛𝑝𝑛(𝑥) ∞
𝑛=0 … … … (7) ∞

𝑛=0  

Equating the coefficients of 𝑧𝑛 from both sides of (7), we get  

𝑝𝑛(−𝑥) = (−1)𝑛𝑝𝑛(𝑥) … … … … (8) 

Deduction. Replace 𝑥 by 1 and noting that 𝑝𝑛(1) = 1, (8) gives 𝑝𝑛(−1) = (−1)𝑛   

 

Note. When 𝑛 is odd, (−1)𝑛 = −1 and so (8) becomes 𝑝𝑛(−𝑥) = −𝑝𝑛(𝑥). Thus, 𝑝𝑛(𝑥) is an odd function of 𝑥 

when 𝑛 is odd. Similarly, 𝑝𝑛(𝑥) is an even function of 𝑥 when 𝑛 is even [1]. 
 

Orhogonal property 4.1. If 𝑝𝑚 and 𝑝𝑛  are legendre polynomials, 

∫ 𝑝𝑚(𝑥)𝑝𝑛(𝑥)𝑑𝑥 = 0 
1

−1
if 𝑚 ≠ 𝑛      and       ∫ 𝑝𝑛

2(𝑥)𝑑𝑥 =
2

2𝑛+1

1

−1
 𝑖𝑓 𝑚 = 𝑛 

Proof 𝟏. Equation (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0 can be written as  

 
𝑑

𝑑𝑥
[(1 − 𝑥2)𝑝𝑛

′ ] = −𝑛(𝑛 + 1)𝑝𝑛  

𝑑

𝑑𝑥
[(1 − 𝑥2)𝑝𝑚

′ ] = −𝑚(𝑚 + 1)𝑝𝑚. 

Multiply the first relation by 𝑝𝑚 and the second relation by 𝑝𝑛  and subtract the resulting expressions. Hence, we get 
𝑑

𝑑𝑥
[(1 − 𝑥2)(𝑝𝑚𝑝𝑛

′ − 𝑝𝑛𝑝𝑚
′ )] = [𝑚(𝑚 + 1) − 𝑛(𝑛 + 1)]𝑝𝑛𝑝𝑚 .  

Now, integrate between the limits −1 and 1. The conclusion follows. ◻ 
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The equation ∫ 𝑝𝑚(𝑥)𝑝𝑛(𝑥)𝑑𝑥 = 0 
1

−1
if 𝑚 ≠ 𝑛 stisfied by 𝑝𝑛 , 𝑝𝑚 , 𝑚 ≠ 𝑛 is called orthogonal relation for 𝑝𝑛  

with weight 1. Therefore legendre polynomial form an orthogonal set of function with weight function unity on 
[−1,1]. The orthogonal property of 𝑝𝑛  is crucially used in the expansion of given function 𝑔 defined and continuous 

on [−1,1] in terms of 𝑝𝑛 . 

 

Proof 𝟐. Let us denote 𝑉 = (𝑥2 − 1)𝑛 then,  

∫ 𝑝𝑛
2(𝑥)𝑑𝑥 =

1

−1

∫ (
1

𝑛! 2𝑛
)

2 𝑑𝑛

𝑑𝑥𝑛
𝑉(𝑥) (

1

𝑛! 2𝑛
)

2 𝑑𝑛

𝑑𝑥𝑛
𝑉(𝑥)

1

−1
 

 

Let us evaluate the integral given below. 

𝐼 = ∫
𝑑𝑛

𝑑𝑥𝑛
𝑉(𝑥)

𝑑𝑛

𝑑𝑥𝑛
𝑉(𝑥).

1

−1
 

 

Note thate  

𝑉(𝑚)(−1) = 𝑉(𝑚)(1) = 0, 𝑖𝑓 0 ≤ 𝑚 < 𝑛. 
 

We successively integrate by parts the integral 𝐼 and get  
 

𝐼 = ∫ [
𝑑2𝑛

𝑑𝑥2𝑛
𝑉(𝑥)] (−1)𝑛𝑉(𝑥)𝑑𝑥 = (2𝑛)!

1

−1

∫ (1 − 𝑥2)𝑛𝑑𝑥.
1

−1

 

With the help of the transformation 𝑡 = 𝑐𝑜𝑠𝜃 and using the formula for ∫ sin𝑚 𝜃𝑑𝜃,
𝜋

2
0

 we arrive at  

∫ 𝑝𝑛
2(𝑥)𝑑𝑥 =

2

2𝑛 + 1

1

−1

 [5] .                        ◻ 

 

 

Conclusion 
       In this article we explained the concept of notion of legendre’s equation, first and second kind of legendre 

polynomial, generating function and orthogonal property which are important in applied mathemtics field. 
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