LEGENDRE'S FUNCTION OF THE FIRST AND SECOND KIND AND ITS GENERATING FUNCTION

Abdul Waris Qadirzada

Assistant Professor, Deportment of Mathematics, Samangan University, Samangan, Afghanistan student, Deportment of Mathematics, Osmania University, Hyderabad Telangana, India

ABSTRACT

Legendre's polynomial is an important part of differential equation which divide in to two parts, they are first kind and second kind, these concepts explain by Legendre's equation. Here we will discuss about Legendre's equation, Legendre's polynomial and generating function for Legendre's polynomials.

Keyword: Legendre's equation, Legendre's polynomials, generating function, orthogonal property.

1. Introduction

The Legendre differential equation arises in problems such as the flow of an ideal fluid past a sphere, the determination of the electric field due to a charged sphere, and the determination of the temperature distribution in a sphere given its surface temperature.

Here we explained Legendre's equation in second section, in third section, polynomial of Legendre illustrated and in fourth section, we discussed about generating function and orthogonal property of Legendre polynomial [2].

2. Legendre's equation

The differential equation of the form $(1 - x^2)y'' - 2xy' + n(n+1)y = 0 \cdots \cdots (1)$ is called Legendre's differential or simply Legendre's equation, where *n* is a constant.[3].

We now solve (1) in series of descending power of x. Let the series solution of (1) be

$$y = \sum_{m=0}^{\infty} c_m x^{k-m}$$
, where $c \neq 0 \cdots \cdots \cdots (2)$

Differentiating (2) and then putting the values of y, y' and y'' into (1), we have

$$(1-x^2)\sum_{m=0}^{\infty}c_m(k-m)(k-m-1)x^{k-m-2} - 2x\sum_{m=0}^{\infty}c_m(k-m)x^{k-m-1} + n(n+1)\sum_{m=0}^{\infty}c_mx^{k-m} = 0 \quad (or)$$
$$\sum_{m=0}^{\infty}c_m(k-m)(k-m-1)x^{k-m-2} - \sum_{m=0}^{\infty}c_m\{(k-m)(k-m-1) + 2(k-m) - n(n+1)\}x^{k-m} = 0 \cdots \cdots (3)$$

Now, (k - m)(k - m - 1) + 2(k - m) - n(n + 1)

$$= (k - m)^{2} - (k - m) + 2(k - m) - n(n + 1) = (k - m)^{2} - n^{2} + (k - m) - n$$

= $(k - m + n)(k - m - n) + (k - m - n) = (k - m - n)(k - m + n + 1).$
Hence (3) may be re-write as

$$\sum_{m=0}^{\infty} c_m (k-m)(k-m-1)x^{k-m-2} - \sum_{m=0}^{\infty} c_m (k-m-n)(k-m+n+1)x^{k-m} = 0 \dots \dots \dots (4)$$

 ∞

(4) is an identity. To get the indicial equation, we equate to zero the coefficient of the highest power of x, namely x^k in (4) and optain $c_0(k-m)(k+n+1) = 0$ (or) (k-m)(k+n+1) = 0 as $c_0 \neq 0 \cdots \cdots \cdots (5)$

So the root of (5) are k = n, -(n + 1). They are unequal and differ by an integer. The next lower power of x is k - 1. So we equate to zero the coefficient of x^{k-1} in (4) and obtain

$$c_1(k-1-n)(k+n) = 0 \cdots \cdots \cdots (6)$$

For k = n and -(n + 1), neither (k - 1 - n) nor (k + n) is zero. So from (6), $c_1 = 0$. Finally, equating to zero the coefficient of x^{k-m} in (4), we have

$$c_{m-2}(k-m+2)(k-m+1) - c_m(k-m-n)(k-m+n+1) = 0$$

$$c_m = \frac{(k-m+2)(k-m+1)}{(k-m-n)(k-m+n+1)} c_{m-2} \cdots \cdots \cdots (7)$$

Putting m = 3, 5, 7, ... in (7) and noting that $c_1 = 0$, we have $c_1 = c_3 = c_5 = c_7 = \cdots = 0. \cdots \cdots \cdots (8)$

which hold good for both k = n and k = -(n + 1).

To obtain c_2, c_4, c_6, \dots etc, we consider two cases **CaseI.** When k = n. Then, (7) become $c_m = -\frac{(n-m+2)(n-m+1)}{m(2n-m+1)}c_{m-2}\dots\dots$ (9) Putting $m = 2, 4, 6, \dots$ in (9), we have

$$c_{2} = -\frac{n(n-1)}{2(2n-1)}c_{0}, \quad c_{4} = -\frac{(n-2)(n-3)}{4(2n-3)}c_{2} = -\frac{n(n-1)(n-2)(n-3)}{2\cdot 4\cdot (2n-1)(2n-3)}c_{0}$$

And so on. Re-write (2), we have for k = n

CaseII. When k = -(n + 1). Then, (7) becomes $c_m = \frac{(n+m-1)(n+m)}{m(2n+m+1)}c_{m-2}\dots\dots(12)$ Putting $m = 2, 4, 6, \dots$ in (12), we have

$$c_{2} = -\frac{(n+1)(n+2)}{2(2n+3)}c_{0}, \qquad c_{4} = -\frac{(n+3)(n+4)}{4(2n+5)}c_{2} = -\frac{n(n+1)(n+2)(n+3)(n+4)}{2\cdot4\cdot(2n+3)(2n+5)}c_{0}$$

and so on. For k = -(n + 1), (2) gives

Remark 1. When there is no confusing regarding the variable x, we shall use a shorter notation P_n for $p_n(x)$ and p'_n for $\frac{dp_n(x)}{dx}$, Q_n for $Q_n(x)$ and Q'_n for $\frac{dQ_n(x)}{dx}$ etc

2.1 Another form of Legendre's polynomial $p_n(x)$

Legender's polynomial of degree n is denoted and define by

$$p_{n}(x) = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!} \left[x^{n} - \frac{n(n-1)}{2(2n-1)} x^{n-2} + \frac{n(n-1)(n-2)(n-3)}{2 \cdot 4 \cdot (2n-1)(2n-3)} x^{n-4} - \dots \right] \dots \dots \dots (1)$$
We now re-write (1) in a compact form. The general term of polynomial (1) is given by
$$\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)^{r}}{n!} \cdot (-1)^{r} \frac{n(n-1)\dots(n-2r+1)}{2 \cdot 4 \cdot 2r(2n-1)(2n-3)\dots(2n-2r+1)} x^{n-2r} \dots \dots (2)$$
Now, $1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1) \cdot 2n}{2 \cdot 4 \cdot 6 \dots \cdot 2n} = \frac{(2n)!}{(2 \cdot 1)(2 \cdot 2)(2 \cdot 3)\dots(2n-2r-1)} = \frac{n!}{2^{n} \cdot 1 \cdot 2 \cdot 3 \dots n} = \frac{(2n)!}{2^{n} \cdot 1 \cdot 2 \cdot 3 \dots n} \dots (3)$
Also, $n(n-1)\dots(n-2r+1) = \frac{n(n-1)(n-2r+1)(n-2r)(n-2r-1)\dots \cdot 3 \cdot 2 \cdot 1}{(n-2r)(n-2r-1)\dots \cdot 3 \cdot 2 \cdot 1} = \frac{n!}{(n-2r)!} \dots \dots (4)$
And $2 \cdot 4 \cdot 6 \dots 2r = (2 \cdot 1)(2 \cdot 2)(2 \cdot 3)\dots(2 \cdot r) = 2^{r} \cdot r! \dots \dots (5)$
Finally, $(2n-1)(2n-3)\dots(2n-r+1) = \frac{(2n)(2n-1)(2n-3)\dots(2n-2r+2)(2n-2r+1)}{(2n)(2n-2)(2n-4)\dots(2n-2r+2)(2n-2r-1)} \times \frac{(2n-2r)!}{(2n-2r)!}$

$$= \frac{(2n)(2n-1)(2n-3)\dots(2n-r+1)(2n-2r)!}{2 \cdot n \cdot 2(n-1)(n-2)\dots(2n-2r+1)(2n-2r)!} = \frac{(2n)!}{2^{n}(2n-2r)!} \times \frac{(n-r)(n-r-1)\dots \cdot 3 \cdot 2 \cdot 1}{n(n-1)(n-2)\dots(n-r+1)(2n-2r)!} = \frac{(2n)!}{2^{n}(2n-2r)!} \times \frac{(n-r)(n-r-1)\dots \cdot 3 \cdot 2 \cdot 1}{n(n-1)(n-2)\dots(n-r+1)(2n-2r)!} = \frac{(2n)!}{2^{n}(2n-2r)!} \times \frac{(n-r)(n-r-1)\dots \cdot 3 \cdot 2 \cdot 1}{n(n-1)(n-2)\dots(n-r+1)(2n-2r)!} = \frac{(2n)!}{2^{n}(2n-2r)!} \times \frac{(n-r)(n-r-1)\dots \cdot 3 \cdot 2 \cdot 1}{n(n-1)(n-2)\dots(n-r)(n-r-1)\dots \cdot 3 \cdot 2 \cdot 1}$$

Using (3), (4), (5) and (6), the general term (2) becomes

$$\frac{(2n)!}{2^n \cdot n!} (-1)^r \cdot \frac{n!}{(n-2r)!} \times \frac{1}{2^r r!} \times \frac{2^n (2n-2r)! n!}{(2n)! (n-r)!} x^{n-2r}$$

$$= (-1)^r \frac{(2n-2r)!}{2^n r! (n-r)! (n-2r)!} x^{n-2r} \dots \dots \dots (7)$$

i.e

Since (1) is polynomial of degree n, r must be chosen so that $n - 2r \ge 0$, i.e., $r \le \frac{n}{2}$. Thus, if n is even, rgoes from 0 to $\frac{1}{2}n$ while if n is odd r goes from 0 to $\frac{1}{2}(n-1)$; that is, for the complete polynomial (1), r goes from 0 to $\left[\frac{1}{2}n\right]$, where

$$\begin{bmatrix} \frac{1}{2}n \end{bmatrix} = \begin{cases} \frac{n}{2}, & \text{if } n = 2k\\ \frac{n-1}{2}, & \text{if } n = 2k-1 \end{cases}$$

Hence the Legendre's polynomial of degree n is given by

$$p_n(x) = \sum_{r=0}^{\lfloor 2 \rfloor} (-1)^r \frac{(2n-2r)!}{2^r r! (n-r)! (n-2r)!} x^{n-2r} \dots \dots \dots (8) \quad [5].$$

3. Kinds of Legendre's function. here is two kind of Legendre's function as follows:

3.1 Legendre's function of the first kind or Legendre's polynomial of degree n.

the solution of Legendre's equation is called Legendre's function When n is positive integer and $a = \frac{1 \cdot 3 \cdot 5(2n-1)}{m!}$, the solution (11) is denoted by $p_n(x)$ and is called Legendre's function of the first kind.

 $p_n(x)$ a terminating series and gives what are called Legendre's polynomials for different values of n. We can write $p_n(x) = \sum_{r=0}^{\left[\frac{n}{2}\right]} (-1)^r \frac{(2n-2r)!}{2^r r! (n-r)! (n-2r)!} x^{n-2r}$ where,

$$\begin{bmatrix} \frac{1}{2}n \end{bmatrix} = \begin{cases} \frac{n}{2}, & \text{if } n = 2k\\ \frac{n-1}{2}, & \text{if } n = 2k-1 \end{cases}$$
[3]

3.2 Legendre's function of the second kind. This is denoted and define by $y = \frac{n!}{1 \cdot 3 \cdot 5 \cdot ...(2n+1)} \left[x^{-(n+1)} + \frac{(n+1)(n+2)}{2(2n+3)} x^{-(n+3)} + \frac{n(n+1)(n+2)(n+3)(n+4)}{2 \cdot 4 \cdot (2n+3)(2n+5)} x^{-(n+5)} + \cdots \right] \dots \dots \dots (2)$ Example 3.2.1 if n = 0, 1, 2, 3, 4 and 5 in result (1), then find $p_0(x), p_1(x), p_2(x), p_3(x), p_4(x)$ and $p_5(x)$ Soluution.

 $p_0(x) = \frac{1}{0!}x^0 = 1$,

$$p_{1}(x) = \frac{1}{1!}x^{1} = x,$$

$$p_{2}(x) = \frac{1\cdot3}{1!} \left[x^{2} - \frac{2\cdot1}{2\cdot3}x^{0} \right] = \frac{1}{2}(3x^{2} - 1),$$

$$p_{3}(x) = \frac{1\cdot3\cdot5}{3!} \left[x^{3} - \frac{3\cdot2}{2\cdot5}x^{1} \right] = \frac{1}{5}(5x^{3} - 3x),$$

$$p_{4}(x) = \frac{1\cdot3\cdot5\cdot7}{4!} \left[x^{4} - \frac{4\cdot3}{2\cdot7}x^{2} + \frac{4\cdot3\cdot2\cdot1}{2\cdot4\cdot7\cdot5}x^{0} \right] = \frac{1}{8}(35x^{4} - 30x^{2} + 3) \text{ and }$$

$$p_{5}(x) = \frac{1\cdot3\cdot5\cdot7\cdot9}{5!} \left[x^{5} - \frac{5\cdot4}{2\cdot9}x^{3} + \frac{5\cdot4\cdot3\cdot2\cdot1}{2\cdot4\cdot9\cdot7}x^{1} \right] = \frac{1}{8}(63x^{5} - 70x^{3} + 15x).$$

Example 3.2.2 Express $2 - 3x + 4x^2$ in terms of Legendre's polynomials. $= 2p_0(x) - 3p_1(x) + \frac{8}{3} \times p_2(x) + \frac{4}{3} \times p_0(x)$ $= \frac{10}{3} \times p_0(x) - 3p_1(x) + \frac{8}{3} \times p_2(x)$ Example 3.2.3 Express $x^4 + 2x^3 + 2x^2 - x - 3$ in terms of Legendre's polynomials.

Solutio. We have

$$p_{0}(x) = 1,$$

$$p_{1}(x) = x,$$

$$p_{2}(x) = \frac{1}{2}(3x^{2} - 1),$$

$$p_{3}(x) = \frac{1}{5}(5x^{3} - 3x) \text{ and}$$

$$p_{4}(x) = \frac{1}{8}(35x^{4} - 30x^{2} + 3).$$

$$\Rightarrow x^{4} = \frac{8}{35} \times p_{4}(x) + \frac{6}{7} \times x^{2} - \frac{3}{35}, \dots \dots \dots (1)$$

$$x^{3} = \frac{2}{5}p_{3}(x) + \frac{3}{5}x, \dots \dots (2)$$

$$x^{2} = \frac{2}{3} \times p_{2}(x) + \frac{1}{3} \dots \dots (3)$$

$$x = p_{1}(x) \text{ and } 1 = p_{0}(x) \dots \dots (4)$$

Now, $x^{4} + 2x^{3} + 2x^{2} - x - 3 = x^{4} + 2x^{3} + 2x^{2} - x - 3 + 2\left[\frac{2}{5}p_{3}(x) + \frac{3}{5}x\right] + 2x^{2} - x -$

$$= \frac{8}{35}p_{4}(x) + \frac{4}{5}p_{3}(x) + \frac{20}{7}x^{2} + \frac{1}{5}x - \frac{108}{35}$$

$$= \frac{8}{35}p_{4}(x) + \frac{4}{5}p_{3}(x) + \frac{20}{7}\left[\frac{2}{3} \times p_{2}(x) + \frac{1}{3}\right] + \frac{1}{5}p_{1}(x) - \frac{108}{35}$$

Using (2), (3) and (4) we get

$$= \frac{8}{35}p_{4}(x) + \frac{4}{5}p_{3}(x) + \frac{40}{21} \times p_{2}(x) + \frac{1}{5}p_{1}(x) - \frac{224}{105}p_{0}(x)$$

4. Generating for Legendre polynomials.

Theorem 4.1. Tshow that $(1 - 2xz + z^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} z^n p_n(x), |x| \le 1$, $|z| \le 1$ or to show that $p_n(x)$ is the coefficient of z^n in the exapansion of $(1 - 2xz + z^2)^{-\frac{1}{2}}$ in assending powers of z. Note: $(1 - 2xz + z^2)^{-\frac{1}{2}}$ is called generating function for Legendre polynomial $p_n(x)$ **Proof:** Since $|z| \le 1$ and $|x| \le 1$, we have $\begin{aligned} |Troof: \text{ Since } |z| \leq 1 \quad \text{and } |x| \leq 1, \text{ we have} \\ (1 - 2xz + z^2)^{-\frac{1}{2}} &= [1 - z(2x - z)]^{-\frac{1}{2}} \\ &= 1 + \frac{1}{2}z(2x - z) + \frac{1\cdot3}{2\cdot4}z^2(2x - z)^2 + \dots + \frac{1\cdot3\cdot\dots(2n-3)}{2\cdot4\cdot\dots(2n-2)}z^{n-1}(2x - z)^{n-1} + \frac{1\cdot3\cdot\dots(2n-1)}{2\cdot4\cdot\dots(2n-1)}z^n(2x - z)^n \dots \dots (1) \\ \text{Now, the coefficient of } z^n \text{ in } \frac{1\cdot3\cdot\dots(2n-1)}{2\cdot4\dots(2n)}z^n(2x - z)^n = \frac{1\cdot3\cdot\dots(2n-1)}{2\cdot4\dots(2n)}(2x)^n = \frac{1\cdot3\cdot\dots(2n-1)\cdot2^n\cdotx^n}{(2\cdot1)(2\cdot2)(2\cdot3)\cdot\dots(2\cdot n)} = \frac{1\cdot3\cdot\dots(2n-1)}{2^n\cdot n!}2^n \cdot x^n \\ &= \frac{1\cdot3\cdot\dots(2n-1)}{n!}x^n \dots \dots \dots (2) \\ \text{Again, the coefficient of } z^n \text{ in } \frac{1\cdot3\cdot\dots(2n-3)}{2\cdot4\cdot\dots(2n-2)}z^{n-1}(2x - z)^{n-1} = \frac{1\cdot3\cdot\dots(2n-3)}{(2\cdot1)(2\cdot2)\cdot\dots(2(n-1))}\{-(n-1)(2x)^{n-2}\} \end{aligned}$

$$=\frac{1\cdot3\cdot\ldots\cdot(2n-3)}{2^{n}\cdot1\cdot2\cdot3\cdot\ldots\cdot(n-1)}\frac{(2n-1)}{n}\frac{n}{(2n-1)}[(n-1)2^{n-2}\times x^{n}-2], \text{ on multiplying and dividing by }\frac{2n-1}{n}\frac{1\cdot3\cdot\ldots\cdot(2n-1)}{n!}\frac{n(n-1)}{2(2n-1)}x^{n-2}\ldots\ldots(3)$$

And so on. Using (2) and (3) We see that the coefficient of z^n in the expansion of $(1 - 2xz + z^2)^{-\frac{1}{2}}$ namely (1) is given by $\frac{1\cdot3\cdot5(2n-1)}{n!} \left[x^n - \frac{n(n-1)}{2(2n-1)} x^{n-2} + \frac{n(n-1)(n-2)(n-3)}{2\cdot4\cdot(2n-1)(2n-3)} x^{n-4} - \cdots \right]$ i.e., $p_n(x)$, by definition of Legendre polynomial.

We find that $p_1(x)$, $p_2(x)$, ... will be the coefficient of z, z^2 , ... in the expansion of $(1 - 2xz + z^2)^{-\frac{1}{2}}$. Thuse, we may write $(1 - 2xz + z^2)^{-\frac{1}{2}} = 1 + zp_1(x) + z^2p_2(x) + \dots + z^np_n(x) + \dots$ or $(1 - 2xz + z^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} z^n p_n(x)$. **Example 4.1** prove that:

$$1 + \frac{1}{2}p_1(\cos\theta) + \frac{1}{3}p_2(\cos\theta) + \dots = \log\left[\frac{(1+\sin\frac{1}{2}\theta)}{\sin\frac{1}{2}\theta}\right]$$

Solution. From the generating function, $(1 - 2xz + z^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} z^n p_n(x) \dots \dots \dots (1)$ Integrating (1) w.r.t z from 0 to 1,

$$\sum_{n=0}^{\infty} \int_{0}^{1} z^{n} p_{n}(x) dz = \int_{0}^{1} \frac{dz}{\sqrt{1 - 2xz + z^{2}}} \dots \dots \dots (2)$$

Replacing x by $cos\theta$ on both sides, (2) gives

$$\sum_{n=0}^{\infty} p_n(\cos\theta) \int_0^1 z^n dz = \int_0^1 \frac{dz}{\sqrt{1-2xz+z^2}}$$

$$\sum_{n=0}^{\infty} p_n(\cos\theta) \left[\frac{z^{n+1}}{n+1} \right]_0^1 = \int_0^1 \frac{dz}{\sqrt{[(z-\cos\theta)^2+\sin^2\theta]}}$$
or $\sum_{n=0}^{\infty} \frac{p_n(\cos\theta)}{n+1} = \left[\log\left\{ (z-\cos\theta) + \sqrt{[(z-\cos\theta)^2+\sin^2\theta]} \right\} \right]_0^1$

$$= \log\left\{ (1-\cos\theta) + \sqrt{[(1-\cos\theta)^2+\sin^2\theta]} \right\} - \log(1-\cos\theta)$$

$$= \log\left\{ (1-\cos\theta) + \sqrt{2(1-\cos\theta)} \right\} - \log(1-\cos\theta)$$

$$= \log\frac{(1-\cos\theta) + \sqrt{2}\sqrt{1-\cos\theta}}{1-\cos\theta} = \log\frac{\sqrt{(1-\cos\theta)}\sqrt{(1-\cos\theta)} + \sqrt{2}\sqrt{1-\cos\theta}}{\sqrt{(1-\cos\theta)}\sqrt{(1-\cos\theta)}}$$

$$= \log\frac{\sqrt{(1-\cos\theta)} + \sqrt{2}}{\sqrt{(1-\cos\theta)}} = \log\frac{\sqrt{(2\sin^2\frac{1}{2}\theta)} + \sqrt{2}}{\sqrt{(2\sin^2\frac{1}{2}\theta)}} = \log\frac{(1+\sin\frac{1}{2}\theta)}{\sin\frac{1}{2}\theta}}{\sqrt{(2\sin^2\frac{1}{2}\theta)}}$$

$$\therefore \quad \frac{p_0(\cos\theta)}{1} + \frac{1}{2}p_1(\cos\theta) + \frac{1}{3}p_2(\cos\theta) + \dots = \log\frac{(1+\sin\frac{1}{2}\theta)}{\sin\frac{1}{2}\theta}$$
Or
$$= \log\frac{(1+\sin\frac{1}{2}\theta)}{\sqrt{(1-\sin\frac{1}{2}\theta)}}$$

$$1 + \frac{1}{2}p_1(\cos\theta) + \frac{1}{3}p_2(\cos\theta) + \dots = \log\frac{(1 + \delta m_2)}{\sin\frac{1}{2}\theta}$$

Example 4.2 Prove that:

$$\begin{aligned} (i) \cdot & p_1(1) = 1\\ (ii) \cdot & p_n(-1) = (-1)^n\\ (iii) \cdot & p'_n(1) = \frac{1}{2}n(n+1).\\ (iv) \cdot & p'_n(-1) = (-1)^{n-1} \times \frac{1}{2}n(n+1). \end{aligned}$$

 $(v) \cdot p_n(-x) = (-1)^n p_n(x)$. Deduce $p_n(-1) = (-)^n$.

Solution. The generating function formula is $(1 - 2xz + z^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} z^n p_n(x), |x| \le 1, |z| \le 1, \dots, (1)$ **part** (*i*) \cdot Putting x = 1 in (1), we get

$$(1-2z+z^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} z^n p_n(1)$$
, or $(1-z)^{-1} = \sum_{n=0}^{\infty} z^n p_n(1)$.

Since $|z| \leq 1$, the binomial theorem can be used for expansion of $(1-z)^{-1}$.

:.
$$1 - z + z^2 - \dots + (-1)^n z^n + \dots = \sum_{n=0}^{\infty} z^n p_n(1) \dots \dots \dots (2)$$

Equating the coefficient of z^n from both sides, (2) gives $p_n(1) = 1$

Part (*ii*) · Putting x = -1 in (1), we have as before

$$(1+2z+z^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} z^n p_n(-1), \text{ or } (1-z)^{-1} = \sum_{n=0}^{\infty} z^n p_n(-1).$$

Or
$$1-z+z^2-\dots+(-1)^n z^n+\dots = \sum_{n=0}^{\infty} z^n p_n(-1)\dots\dots\dots(3)$$

Equating the coefficient of z^n from both sides, (3) gives $p_n(-1) = (-1)^n$.

Part(*iii*) · Since $p_n(x)$ satisfies Legendre's equation $(1 - x^2)y'' - 2xy' + n(n+1)y = 0$, we get $(1 - x^2)p_n''(x) - 2xp_n'(x) + n(n+1)p_n(x) = 0 \dots \dots (4)$ Putting x = 1 in (4) and using $p_n(1) = 1$, we get $0 - 2p'_n(1) + n(n+1) = 0$ or $p'_n(1) = \frac{1}{2}n(n+1)$.

Part (*iv*). Putting
$$x = -1$$
 in (4) and using $p_n(-1) = (-1)^n$, we get
 $0 + 2p'_n(-1) + n(n+1)(-1)^n = 0$ or $p'_n(-1) = -(-1)^n \times \frac{1}{2}n(n+1)$.
Or $p'_n(-1) = (-1) = (-1)^{n-1} \times \frac{1}{2}n(n+1)$ [: $-(-1)^n = -(-1)^{n-1}(-1) = (-1)^{n-1}$

Next, replacing z by -z in (1), $(1 + 2xz + z^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} (-z)^n p_n(x) \dots \dots \dots (6)$ $\sum_{n=0}^{\infty} z^n p_n(-x) = \sum_{n=0}^{\infty} (-z)^n p_n(x) \dots \dots \dots (7)$ From (5) and (6), Equating the coefficients of z^n from both sides of (7), we get $p_n(-x) = (-1)^n p_n(x) \dots \dots \dots (8)$ Deduction. Replace x by 1 and noting that $p_n(1) = 1$, (8) gives $p_n(-1) = (-1)^n$

Note. When n is odd, $(-1)^n = -1$ and so (8) becomes $p_n(-x) = -p_n(x)$. Thus, $p_n(x)$ is an odd function of x when n is odd. Similarly, $p_n(x)$ is an even function of x when n is even [1].

Orhogonal property 4.1. If p_m and p_n are legendre polynomials, $\int_{-1}^{1} p_m(x) p_n(x) dx = 0$ if $m \neq n$ and $\int_{-1}^{1} p_n^2(x) dx = \frac{2}{2n+1}$ if m = n**Proof 1.** Equation $(1 - x^2)y'' - 2xy' + n(n+1)y = 0$ can be written as

$$\frac{d}{dx}[(1-x^2)p'_n] = -n(n+1)p_n$$
$$\frac{d}{dx}[(1-x^2)p'_m] = -m(m+1)p_m.$$

Multiply the first relation by p_m and the second relation by p_n and subtract the resulting expressions. Hence, we get $\frac{d}{dx}[(1-x^2)(p_mp'_n-p_np'_m)] = [m(m+1)-n(n+1)]p_np_m.$

Now, integrate between the limits -1 and 1. The conclusion follows.

The equation $\int_{-1}^{1} p_m(x)p_n(x)dx = 0$ if $m \neq n$ stisfied by p_n , p_m , $m \neq n$ is called orthogonal relation for p_n with weight 1. Therefore legendre polynomial form an orthogonal set of function with weight function unity on [-1,1]. The orthogonal property of p_n is crucially used in the expansion of given function g defined and continuous on [-1,1] in terms of p_n .

Proof 2. Let us denote
$$V = (x^2 - 1)^n$$
 then,
$$\int_{-1}^{1} p_n^2(x) dx = \int_{-1}^{1} \left(\frac{1}{n! 2^n}\right)^2 \frac{d^n}{dx^n} V(x) \left(\frac{1}{n! 2^n}\right)^2 \frac{d^n}{dx^n} V(x)$$

Let us evaluate the integral given below.

$$I = \int_{-1}^{1} \frac{d^n}{dx^n} V(x) \frac{d^n}{dx^n} V(x).$$

Note thate

$$V^{(m)}(-1) = V^{(m)}(1) = 0, if \quad 0 \le m < n.$$

We successively integrate by parts the integral I and get

$$I = \int_{-1}^{1} \left[\frac{d^{2n}}{dx^{2n}} V(x) \right] (-1)^n V(x) dx = (2n)! \int_{-\frac{1}{\pi}}^{1} (1-x^2)^n dx.$$

With the help of the transformation $t = \cos\theta$ and using the formula for $\int_{0}^{\frac{\pi}{2}} \sin^{m}\theta d\theta$, we arrive at

$$\int_{-1}^{1} p_n^2(x) dx = \frac{2}{2n+1} \quad [5].$$

Conclusion

In this article we explained the concept of notion of legendre's equation, first and second kind of legendre polynomial, generating function and orthogonal property which are important in applied mathematics field.

Reference

[1]. M.D. RaisingHania, (2019), "Ordinary and Partial Differential Equations", S.chand and Company Limited, Ram, Nagar, New Deli, (9.1-9.10).

[2]. P. Agarwal, Ravi and Donal O'Regan, (2009), "Ordinary and Partial Differential Equation with Special Function, Forier Series, and Boundary Value Problems", springer, New York, 74.

[3]. P.K. Mittal, (2008), "Mathematics For Degree Student B.Sc. second year", S.chand and Company Pvt.LTD,RamNagar, New Deli, (314).

[4]. Said-Houari, Belkacem, (2015), "Differential Equation Methods and Aplication", United Arab Emirates 135.

[5]. SGDeo, V Raghavendra, Rasmita Kar, V Lakshmi Kantham (2015), "atextbook of Ordinary Differential Equation", McGraw Hill Education(india) private Limeted, New Delhi, (239 – 243).