# LEVEL OF SERVICE (LOS) OF FREEWAY SEGMENTS WITHIN MAKURDI METROPOLIS

Aondoseer Abraham Atoo<sup>1</sup>, Paul Terkumbur Adeke<sup>2</sup>, Aondoasee Emmanuel Daniel<sup>3</sup>

<sup>1,2,3</sup>(Department of Civil Engineering, University of Agriculture Makurdi, Nigeria)

## ABSTRACT

Traffic characteristics of selected freeway segments within Makurdi metropolis were studied to determine the level of service (LOS) for the selected routes. The roads studied were Makurdi-Jos road (Route 1), Iyorchia Ayu road (Route 2) and Makurdi-Otukpo road (Route 3). Traffic count to determine the traffic volume/flow was undertaken for a period of seven days with spot speed along the routes obtained with the help of speed gun. Results obtained shows the highest volume of traffic along the routes experience during the morning peak of 7:00 AM TO 9:00 AM and evening peak between 5:00 PM to 6:00 PM on week days. The density speed linear models for the routes was found to linear for each lane route which were u = 91.14 - 1.86k, u = 88.08 - 1.69k, u = 68.70 - 0.61k, u = 58.87 - 0.42k, u = 74.69 - 0.91k, and u = 71.57 - 0.87k for Route 1A, 1B, 2A, 2B, 3A and 3B respectively. It was also found that Route 1A and 1B has an average arterial speeds of 57.4 km/hr and 57.9 km/hr with free flow speeds of 91.2 km/hr and 88.1 km/hr respectively and this implies that the routes have average arterial speeds which are a little more than 50% but less than 70% of their free flow speeds thereby describing it as LOS C. In the same vain, routes 2A and 2B have arterial speeds of 44.8 km/hr and 41.5 km/hr with free flow speeds of 113 km/hr and 140 km/hr respectively which amount to about 70% of their free flow speeds hence, LOS on the routes is LOS B. Also routes 3A and 3B have speeds of 49.9 km/hr and 47 km/hr with free flow speeds of 82 km/hr and 82 km/hr respectively which are greater than 50% of their free flow speeds but not up 70% hence their LOS is described as LOS C. The road links LOS should be maintained and care should be taken not to worsen the level of service within Makurdi metropolis.

Keyword: - Level of Service (LOS), Traffic Characteristics

# **1. INTRODUCTION**

The economic and social development of a nation includes the highway network and how it is able to efficiently serve it purpose of reducing journey time and cost of travel within the country. Transportation engineers seek to plan for safe, efficient and convenient movement of persons and goods from one location to another. It is therefore paramount to frequently assess the effectiveness of road networks within the city as the population of a city increases in order to enable for future planning and management of traffic for the good of the people which if not taken care will lead into congestion of the roads [1]. It is important to have a good knowledge of traffic flow parameters and how the relate to each other for a safe, smooth and economic traffic operations [2].

The travel time for a given road is affected by the density and flow which determines the speed on such road. At low traffic volumes, the prevailing speed limit governs the flow but this has been shown that it is influenced by the geometric conditions on the road facility, including lane widths and shoulder clearances. This geometric attributes and the level of comfort allows the drivers to move at desired speed (free-flow speed) at this low flow [3].

As traffic flow increases, the operation on road facility is governed by the interactions of vehicles. Eventually, the density on the road increases to a point where speeds begin to drop, as drivers are no longer comfortable maintaining high speeds with limited manoeuvre space. The traffic demand continues to increase which can exceed the available capacity and flows becomes unstable and congested.

In order to measure the level of effectiveness, the density, speed, flow must be measured and analyzed so as to determine the level of service (LOS) on road link. This road links are freeway segments. Freeway segment is

defined as a divided highway with full control of access and two or more lanes for the exclusive use of traffic in each direction that is outside of the influence of an access-controlled facility with no signalized or stop-controlled atgrade intersection intersecting the mainline [4]. Freeway capacity is expressed in passenger cars per hour per lane, which can be accommodated by a uniform freeway segment under prevailing traffic and roadway conditions in on direction of flow. The service measure for freeway LOS is the average segment density in passenger cars per kilometre per lane [5].

LOS is group in A, B, C, D, E, and F, where LOS A is completely free-flowing conditions with average travel speed usually 90% of the free flow speed for arterial class. LOS B is stable flow for a freeway with an average travel speed of about 70% of the free flow speed for arterial class. LOS C is reasonable and uniform flow but with lower operating speed having an average travel speed of 50% of the free flow speed. LOS D is approaching unstable flow with low operating speeds, LOS E described unstable flow while LOS F described forced flow or the stop-and-go movement [1,3].

Many research on traffic delays and capacity assessment has been carried out on intersections and roundabout (both signal and unsignalized intersections and roundabouts) [6,7,8,9]. Traffic flows on road links comes from or moves to intersections and roundabout which contributes to traffic at the intersections and roundabouts. Therefore this research assessed freeway segments and determined level of services (LOS) of some selected roads in Makurdi metropolis for proper management and future designs. This was achieved by determining the spot speed of vehicles, traffic volume/flow, traffic density and establishment of relationship between flow, speed and density of selected road links at 1km road length. Three road links on Iyorchia Ayu road, Makurdi-Jos road, and Makurdi-Otukpo road) were considered and their city description names and research notations given in Table 1 with each lane considered individually.

| <b>Route Starting Point</b> | Route End Point    | Main Notation     | Lane Notation |
|-----------------------------|--------------------|-------------------|---------------|
| SRS Junction                | New Bridge         | Route 1 (Iyorchia | Route 1A      |
| New Bridge                  | SRS Junction       | Ayu Road)         | Route 1B      |
| Wurukum Roundabout          | Savannah Bus stop  | Route 2 (Makurdi- | Route 2A      |
| Savannah Bus stop           | Wurukum Roundabout | Jos Koad)         | Route 2B      |
| Wurukum Roundabout          | OG Winners Plaza   | Route 3 (Makurdi- | Route 3A      |
| OG Winners Plaza            | Wurukum Roundabout | Ошкро коаа)       | Route 3B      |

**Table 1**: Road links descriptions with notation

## 2. MATERIALS AND METHODS

#### 2.1 Description of Study Area

Makurdi is the capital city of Benue State in middle belt of Nigeria. It is a state mostly populated by civil servants, farmers and traders. I have River Benue running through the state.

Three major routes links where considered namely Route 1 (SRS Junction – New Bridge) named Makurdi – Jos Road which is on the North side of River Benue. It is a double lane single carriage way. Route 2 (Wurukum Roundabout – Savannah bus stop) named Iyorchia Ayu Road which is dual carriage way with each carriage way carrying traffic in opposite direction to each other. Route 3 (Wurukum Roundabout to OG Winners Plaza) named Old Otukpo Road which is a dual lane single carriage way. Each lane in on these three routes were studied separately with routes notation given in Table 1. Plate 1 screen shot from Google map on the study locations.



#### 2.3 Methodology

#### 2.3.1 Methodology for traffic volume/flow and spot speed determination

The procedure followed in determining traffic volume/flow are:

- > Well trained observers were positioned at various sections of the roadway of interest.
- The number of vehicles passing each observer was noted and recorded by means of tallies using prepared data sheets and pencils.
- > The counting was within hourly intervals.
- This was repeated for a week (7 days) of 12hrs daily.
- > The results were tabulated for calculations and analysis

For spot speed, a hand-held speed gun was used for the measurement of spot speed of vehicles along the road links. Two observers, one equipped with the speed gun and the other with a pencil and paper for recording were stationed at convenient sections of the various links. The bearer of the speed gun points the instrument at random samples of approaching vehicles at an angle to eliminate errors with the button depressed until the vehicle just passes the observer. The button is then released and the average speed of the vehicle is displayed. The speed is then read by the first observer to the second for recording. This was repeated for the desired number of vehicle samples for the given days of survey.

The data was presented in tables with road links denoted by notations given in Table 1 used for purpose of convenience and ease of data presentation. This makes the result reading in Route 1A, 1B, 2A, 2B, 3A and 3B.

#### 2.3.2 Methodology of Data Analysis

After the determination of average daily flow and the respective daily mean speeds, daily density (k) is determined by calculations using

$$k = \frac{q}{u} \tag{1}$$

To obtain the desired relationships among the various traffic flow parameters, a linear regression model of the form:

$$y = a + bx \tag{2}$$

was assumed and fitted between speed and density such that y denotes the speed (u), and x denotes the density (k).

The coefficients a and b are computed using:

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(3.1)  
$$a = \bar{y} - b\bar{x}$$
(3.2)

Where  $x_i$  and  $y_i$  are the samples, *n* is the number of samples and  $\bar{x}$  and  $\bar{y}$  are the mean of  $x_i$  and  $y_i$  respectively.

The boundary parameters are then found as follow:

$$a = u_f \text{ (Free flow speed)}$$
(4)  

$$b = \frac{u_f}{k_j} \rightarrow k_j = \frac{a}{b} \text{ (Jam density)}$$
(5)  
The maximum flow,  $q_{max}$  is given by as:

$$q_{max} = \frac{u_f \kappa_j}{4} = \frac{a^2}{4b} \tag{6}$$

Having found the boundary parameters given in equations (4), (5) and (6), the relationship between speed, density and flow at any point within the traffic stream was established which is related to equation (3.2) and is given as:

$$u = u_f - \frac{u_f}{k_j}k\tag{7}$$

The equivalent PCU are calculated based on Federal Ministry of Works' Federal Highway design manual part 1 [11] in which vehicle classification and equivalent PCU are given in Table 2.

| Table 2. Equivalent Passenger Car Units |                     |             |             |                 |  |  |  |  |
|-----------------------------------------|---------------------|-------------|-------------|-----------------|--|--|--|--|
|                                         | Passenger Car Units |             |             |                 |  |  |  |  |
| Vehicle Type                            | Rural Roads         | Urban Roads | Roundabouts | Traffic Signals |  |  |  |  |
| Cars & light vans                       | 1.0                 | 1.0         | 1.0         | 1.0             |  |  |  |  |
| Heavy Vehicles                          | 3.0                 | 1.75        | 2.8         | 1.75            |  |  |  |  |
| Buses & Coaches                         | 3.0                 | 3.0         | 2.8         | 2.25            |  |  |  |  |
| Motorcycles                             | 1.0                 | 0.75        | 0.75        | 0.33            |  |  |  |  |
| Pedal cycles                            | 0.5                 | 0.33        | 0.5         | 0.2             |  |  |  |  |
|                                         |                     |             |             |                 |  |  |  |  |

 Table 2: Equivalent Passenger Car Units

In the research, the column for Urban Roads was used for the pcu value computation for the various vehicle types. Pedal cycles were not considered due to very minimal value recorded for them.

## 3. DATA/RESULTS PRESENTATION AND ANALYSIS

The summary of the survey data is systematically presented in tables. The traffic count is presented in Table 3 with the average speed presented in Table 4. Using the pcu values in Table 2, the hourly traffic flow for the week is given in Table 5. Equation (1) was used to calculate traffic density given in Table 6. The summary of the speed, flow and density is presented in Table 7 while the Table 8 present the various linear regression models for the routes and their maximum flow  $(q_{max})$ , jam density  $(k_i)$  and free flow speed  $(u_f)$ .

|                           |               | MON   | TUE  | WED  | THUR | FRI  | SAT  | SUN  | TOTAL |
|---------------------------|---------------|-------|------|------|------|------|------|------|-------|
|                           | Motorcycles   | 5040  | 3541 | 3323 | 4236 | 3954 | 4382 | 4735 | 29211 |
| Route 1A                  | PC/mini Buses | 2563  | 2231 | 2076 | 2373 | 2486 | 2186 | 2104 | 16019 |
| Koute IA                  | Trc/Cst Buses | 218   | 192  | 126  | 166  | 194  | 235  | 105  | 1236  |
|                           | Trl/Mc Buses  | 97    | 98   | 71   | 78   | 101  | 107  | 77   | 629   |
|                           | Motorcycles   | 4816  | 3725 | 3213 | 4397 | 3749 | 4561 | 4406 | 28867 |
| Route 1B                  | PC/mini Buses | 2983  | 2700 | 2056 | 2227 | 2059 | 2363 | 2119 | 14388 |
|                           | Trc/Cst Buses | 177   | 96   | 155  | 104  | 143  | 264  | 105  | 1044  |
| 10                        | Trl/Mc Buses  | 56    | 52   | 123  | 62   | 60   | 115  | 68   | 536   |
| 16                        | Motorcycles   | 9363  | 8899 | 6883 | 4543 | 4414 | 4234 | 5260 | 43596 |
| Route 2A                  | PC/mini Buses | 3591  | 3052 | 2498 | 1902 | 2657 | 2079 | 2355 | 18134 |
|                           | Trc/Cst Buses | 633   | 554  | 194  | 158  | 230  | 142  | 97   | 2008  |
| 1                         | Trl/Mc Buses  | 77    | 56   | 82   | 105  | 99   | 95   | 65   | 579   |
| Contraction of the second | Motorcycles   | 10135 | 9266 | 6305 | 4363 | 4850 | 4286 | 5307 | 44512 |
| Route 2B                  | PC/mini Buses | 3484  | 3056 | 2402 | 2347 | 2753 | 2262 | 2240 | 18544 |
|                           | Trc/Cst Buses | 506   | 461  | 313  | 188  | 262  | 125  | 102  | 1957  |
|                           | Trl/Mc Buses  | 94    | 90   | 97   | 75   | 79   | 86   | 62   | 583   |
|                           | Motorcycles   | 7760  | 7141 | 4714 | 5070 | 4885 | 3896 | 3996 | 37462 |
| Douto 3A                  | PC/mini Buses | 3387  | 2871 | 2297 | 2077 | 2361 | 1888 | 2237 | 17118 |
| Noute 5A                  | Trc/Cst Buses | 161   | 109  | 175  | 129  | 243  | 167  | 72   | 1056  |
|                           | Trl/Mc Buses  | 91    | 56   | 82   | 81   | 111  | 115  | 42   | 578   |
|                           | Motorcycles   | 7971  | 7107 | 5123 | 4834 | 5347 | 4164 | 4038 | 38584 |
| Route 3R                  | PC/mini Buses | 3261  | 3427 | 2756 | 2137 | 2540 | 1977 | 2202 | 18300 |
| Noure 3D                  | Trc/Cst Buses | 123   | 117  | 125  | 210  | 161  | 148  | 90   | 974   |
|                           | Trl/Mc Buses  | 62    | 57   | 68   | 92   | 77   | 89   | 60   | 505   |

**Table 3**: Summary of traffic count results for one week

| Table 4: Summary of average daily speed |                        |          |          |          |          |          |  |
|-----------------------------------------|------------------------|----------|----------|----------|----------|----------|--|
|                                         | AVERAGE SPEED (Km/hr.) |          |          |          |          |          |  |
| DAY                                     | Route 1A               | Route 1B | Route 2A | Route 2B | Route 3A | Route 3B |  |
| MON.                                    | 45.5                   | 42.3     | 25.6     | 20.3     | 30.7     | 31.0     |  |
| TUE.                                    | 66.7                   | 63.4     | 31.7     | 29.1     | 31.5     | 33.8     |  |
| WED.                                    | 70.3                   | 68.8     | 35.8     | 38.2     | 49.3     | 43.1     |  |
| THUR.                                   | 56.6                   | 58.5     | 65.0     | 52.6     | 53.8     | 48.9     |  |
| FRI.                                    | 54.4                   | 57.1     | 57.8     | 41.0     | 50.2     | 42.0     |  |
| SAT.                                    | 51.3                   | 46.7     | 60.9     | 63.3     | 68.1     | 64.2     |  |
| SUN.                                    | 57.0                   | 68.5     | 55.3     | 46.2     | 65.4     | 65.7     |  |
| MEAN                                    | 57.4                   | 57.9     | 47.4     | 41.5     | 49.9     | 47.0     |  |

| Table 4: | Summary | of average | daily | speed |
|----------|---------|------------|-------|-------|
|          |         |            |       |       |

Table 5: Average hourly distribution of Equivalent PCU for one week

|       | AVERAGE INAFFIC FLOW PER HOUR (ven/nr) |          |          |          |          |          |  |  |
|-------|----------------------------------------|----------|----------|----------|----------|----------|--|--|
| DAY   | Route 1A                               | Route 1B | Route 2A | Route 2B | Route 3A | Route 3B |  |  |
| MON.  | 1169                                   | 1179     | 1992     | 2042     | 1627     | 1607     |  |  |
| TUE.  | 920                                    | 945      | 1811     | 1847     | 1431     | 1522     |  |  |
| WED.  | 834                                    | 851      | 1374     | 1320     | 1064     | 1170     |  |  |
| THUR. | 1013                                   | 954      | 984      | 1029     | 1153     | 1068     |  |  |
| FRI.  | 1016                                   | 884      | 1111     | 1181     | 1131     | 1177     |  |  |
| SAT.  | 1034                                   | 1099     | 965      | 992      | 908      | 938      |  |  |
| SUN.  | 1012                                   | 969      | 1111     | 1098     | 914      | 928      |  |  |
| MEAN  | 1000                                   | 983      | 1335     | 1358     | 1175     | 1201     |  |  |

Table 6: Summary of calculated traffic density

| DAV   | CALCULATED TRAFFIC DENSITY (Veh/km) |          |          |          |          |          |  |
|-------|-------------------------------------|----------|----------|----------|----------|----------|--|
| DAY   | Route 1A                            | Route 1B | Route 2A | Route 2B | Route 3A | Route 3B |  |
| MON.  | 26                                  | 28       | 79       | 101      | 53       | 52       |  |
| TUE.  | 14                                  | 15       | 57       | 64       | 45       | 45       |  |
| WED.  | 12                                  | 12       | 38       | 35       | 22       | 27       |  |
| THUR. | 18                                  | 16       | 15       | 20       | 21       | 22       |  |
| FRI.  | 19                                  | 16       | 19       | 29       | 23       | 28       |  |
| SAT.  | 20                                  | 24       | 16       | 16       | 13       | 15       |  |
| SUN   | 10                                  | 14       | 20       | 24       | 14       | 14       |  |

|       |                 |      |      |      | DAY  |      |      |      |
|-------|-----------------|------|------|------|------|------|------|------|
| Route | Parameter       | MON. | TUE. | WED. | THUR | FRI. | SAT. | SUN. |
|       | Speed (km/hr)   | 45.5 | 66.7 | 70.3 | 56.6 | 54.4 | 51.3 | 57.0 |
| 1A    | Flow(Veh/hr)    | 1169 | 920  | 834  | 1013 | 1016 | 1034 | 1012 |
|       | Density(Veh/km) | 26   | 14   | 12   | 18   | 19   | 20   | 18   |
|       | Speed (km/hr)   | 42.3 | 63.4 | 68.8 | 58.5 | 57.1 | 46.7 | 68.5 |
| 1B    | Flow(Veh/hr)    | 1179 | 945  | 851  | 954  | 884  | 1099 | 969  |
|       | Density(Veh/km) | 28   | 15   | 12   | 16   | 16   | 24   | 14   |
| 2.4   | Speed (km/hr)   | 25.6 | 31.7 | 35.8 | 65.0 | 57.8 | 60.9 | 55.3 |
| ZA    | Flow(Veh/hr)    | 1992 | 1811 | 1374 | 984  | 1111 | 965  | 1111 |
|       | Density(Veh/km) | 79   | 57   | 38   | 15   | 19   | 16   | 20   |
| 28    | Speed (km/hr)   | 20.3 | 29.1 | 38.2 | 52.6 | 41.0 | 63.3 | 46.2 |
| 20    | Flow(Veh/hr)    | 2042 | 1847 | 1320 | 1029 | 1181 | 992  | 1098 |
|       | Density(Veh/km) | 101  | 64   | 35   | 20   | 29   | 16   | 24   |
|       | Speed (km/hr)   | 30.7 | 31.5 | 49.3 | 53.8 | 50.2 | 68.1 | 65.4 |
| 3A    | Flow(Veh/hr)    | 1627 | 1431 | 1064 | 1153 | 1131 | 908  | 914  |
|       | Density(Veh/km) | 53   | 45   | 22   | 21   | 23   | 13   | 14   |
|       | Speed (km/hr)   | 31.0 | 33.8 | 43.1 | 48.9 | 42.0 | 64.2 | 65.7 |
| 3B    | Flow(Veh/hr)    | 1607 | 1522 | 1170 | 1068 | 1177 | 938  | 928  |
|       | Density(Veh/km) | 52   | 45   | 27   | 22   | 28   | 15   | 14   |

**Table 7**: Summary of traffic stream characteristics

**Table 8**: Summary of results from models and outcome for each lane

| Route | Model             | q <sub>max</sub> (Veh/hr) | k <sub>i</sub> (veh/km) | $u_f$ (km/hr) |
|-------|-------------------|---------------------------|-------------------------|---------------|
| 1A    | u = 91.14 - 1.86k | 1117                      | 49                      | 91.14         |
| 1B    | u = 88.08 - 1.69k | 1145                      | 52                      | 88.08         |
| 2A    | u = 68.70 - 0.61k | 1941                      | 113                     | 68.70         |
| 2B    | u = 58.87 - 0.42k | 2061                      | 140                     | 58.87         |
| 3A    | u = 74.69 - 0.91k | 1531                      | 82                      | 74.69         |
| 3B    | u = 71.57 - 0.87k | 1467                      | 82                      | 71.57         |

## 4. DISCUSSION OF RESULTS

From Table 3, the traffic count results shows that motorcycles constitute about 50% of the total traffic on the metropolitan streets of Makurdi followed by passenger cars and mini buses which contribute about 40% of the traffic while heavy vehicles like coaster/Marco polo buses, trucks and trailers constitute only about 10% of the total traffic stream.

According to total equivalent PCU flow of Table 5, there is an indication that route 2A and 2B are the busiest among the six routes of interest followed by routes 3A and 3B with routes 1A and 1B having the lowest traffic flow, a consequence of which routes 2A and 2B have the lowest speed, followed by routes 3A and 3B with routes 1A and 1B having the highest spot speed value.

From analysis conducted to establish a relationship between speed, flow and density of the traffic stream on each route coupled with results of speed data given in Table 4 and 8, level of service, LOS for the links is thus: routes 1A and 1B have average arterial speeds of 57.4 and 57.9 with free flow speeds of 91.2 and 88.1 respectively and this implies that the routes have average arterial speeds which are a little more than 50% but less 70% of their free flow speeds thereby describing it as LOS C.

In the same vain, routes 2A and 2B have arterial speeds of 44.8 km/hr and 41.5 km/hr with free flow speeds of 113 km/hr and 140 km/hr respectively which amount to about 70% of their free flow speeds hence, LOS on the routes is LOS B.

Also routes 3A and 3B have speeds of 49.9 km/hr and 47 km/hr with free flow speeds of 82 km/hr and 82 km/hr respectively which are greater than 50% of their free flow speeds but not up 70% hence their LOS is described as LOS C

#### 5. CONCLUSION

In this research, the highest peak hours of traffic flow occur between the hours of 7:00 am and 9:00 am for morning peak and 5:00 pm and 6:00 pm for evening peak on week days while peak flow during weekends occurred between 4:00 pm to 6:00 pm.

Speed studies showed that route 1A and 1B had the highest average spot speed values of 57.4 km/hr and 57.9 km/hr respectively followed by routes 3A and 3B which recorded 49.9 km/hr. and 47.0 km/hr. respectively while routes 2A and 2B recorded 47.4 km/hr and 41.5 km/hr.

Route 1 was found to possess a Level of Service C. Route 2 had a Level of Service B while route 3 also had Level of service C.

#### 6. RECOMMENDATION

Care should be taken to maintain and improve the level of service for the routes so as not to get worst with increasing population. The road pavement should be maintained and the shoulders work upon.

## 7. REFERENCES

- [1] Abuh, A.A. (1997). Determination of Axle-load distribution and Design of an Overlay on Makurdi -Yandev Road, unpublished.
- [2] Papacostas, S.C. and Prevendouros, D.P. (2001). Transportation Engineering and Planning. Third Edition, PHI Learning Ltd, New Delhi.
- [3] Findley, D. J, Schroeder, J. B, Cumningham, M. C. and Brown-Jr, H. T. (2016) Highway Engineering: planning, design and operations. Esvier Inc, USA.
- [4] Transportation Research Board (TRB). (2015). Highway Capacity Manual. Transportation Research Board of the National Academy of Sciences, Washington, DC.
- [5] Salter, J.R. and Hounsell, B.N. (1996). Highway Traffic Analysis and Design. Third Edition, Macmillan Press Ltd, London.
- [6] Al-Mudhaffar, A. (2006). Impacts of Traffic Signal Control Strategies, Doctoral Thesis in Traffic and Transport Planning, Infrastructure and Planning, Royal Institute of Technology, Stockholm, Sweden.
- [7] Jimoh, Y.A.; Adeleke, O.O. and Afolabi, A.A. (2012). An Evaluation of the operation of a Fixed –Time Signalization Scheme for a Four Leg Intersection in Ilorin Metropolis, Nigeria. Research Journal of Applied Sciences, Engineering and Technology, 4 (17), 2839 2845
- [8] Xi, J.; Wang, S. and Wang, C. (2015). An Approach to an intersection traffic delay study based on shiftshare analysis. Journal of Information, Multidisciplinary Digital Publishing Institute, 6, 246 257.

- [9] Wu, N. and Giuliani, S. (2016). Capacity and Delay Estimation at Signalised intersections under unsaturated Flow conditions based on cycle overflow probability. International Symposium on enhancing highway Performance, Transportation Research Procedia, 15, 63 74
- [10] Google Maps (2018). Retrieved at https://www.google.com.ng/maps/@7.6940201,8.5457404,14z. Accessed on 12/07/2018.
- [11] Federal Republic of Nigeria (2013). Highway Manual Part 1: Design, Volume 1, Geometric Design.

