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                           ABSTRACT 

 
The purpose of this paper is to analyze several algorithm design paradigms applied to a single problem - the 0/1 

Knap- sack Problem. The Knapsack problem is a combinatorial optimization problem where one has to maximize 

the benefit of objects in a knapsack without exceeding its capacity. It is an NP-complete problem and as such an 

exact solution for a large input is practically impossible to obtain. The main goal of the paper is to present a 

comparative study of the brute force, dynamic programming, and greedy algorithms. The paper discusses the 

complexity of each algorithm in terms of time requirements, and in terms of required programming efforts. Our 

experimental results show that the most promising approaches are dynamic programming. 

 
 

1 INTRODUCTION 

In this project we are going to use Brute Force, Dynamic Programming, genetic and Greedy 

Algorithms to solve the Knapsack Problem where one has to maximize the benefit of items in a  

knapsack without extending its capacity. The main goal of this project is to compare the results of 

these algorithms and find the best one. 

 

1.1. The Knapsack Problem (KP) 

The Knapsack Problem is an example of a combinatorial optimization problem, which seeks for a 

Best solution from among many other solutions. It is concerned with a knapsack that has positive 

integer volume (or capacity) V. There are n distinct items that may potentially be placed in the 

knapsack. Item i has a positive integer volume Vi and positive integer benefit Bi. In addition, 

there are Qi copies of item I available, where quantity Qi is a positive integer .Let Xi determines 

how many copies of item i are to be placed into the knapsack. The goal is to: 

 

Maximize 

N 

       Ȩ  BiXi 

n=1 

Subject to the constraints 

N 

       Ȩ  ViXi V 

n=1 

And 0≤ Xi ≤Qi 
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If one or more of the Qi is infinite, the KP is unbounded; otherwise, the KP is bounded [1]. The 

bounded KP can be either 0-1 KP or Multi constraint KP. If Qi = 1 for i = 1, 2,, N, the problem is 

a 0-1 knapsack problem In the current paper,  we have worked on the bounded 0-1 KP, where we 

cannot have more than one copy of an item in the knapsack. 

 

2 Different Approaches 

 2.1 Brute Force 

Brute force is a straightforward approach to solving a problem, usually directly based on the 

problem’s statement and definitions of the concepts involved. If there are n items to choose from, 

then there will be 2n possible combinations of items for the knapsack. An item is either chosen or not 

chosen. A bit stringof0’sand1’s is generated which is of length n. If the ith symbol of a bit string is 0, 

then the ith item is not chosen and if it is 1, the ith item is chosen. 

 

ALGORITHM 

 

Brute Force (Weights [1 N], Values [1 N], A[1N]) 

    Finds the best possible combination  of  items  for the KP 

Input: Array Weights contains the weights of all items 

Array Values contains the values of all items Array A initialized with 0s is used to generate the  

bit strings 

Output: Best possible combination of items in the knapsack best_Choice[1 .. N] 

for i = 1 to 2
n
 

do j ← n 

temp_Weight ←0 

temp_Value ← 0 

while ( A[j] != 0 and j >0)  

A[j] ← 0 j ← j -1 

A[j] ← 1 for k ← 1 to n do 

 if (A[k] = 1) then 

temp_Weight ← temp_Weight + Weights[k] 

 temp_Value ← temp_Value + Values[k] 

if ((temp_Value >best_Value) AND (temp_Weight≤ Capacity)) then  

best_Value ← temp_Value 

best_Weight ← temp_Weight 

      best_Choice ← A 

return best_Choice 

 
Complexity 

 
Since the complexity of this algorithm grows exponentially, it can only be used for small instances of the   KP. 

Otherwise, it does not require much programming effort in order to be implemented. Besides the memory used to 

store the values and weights of all items, this algorithm requires a two one dimensional arrays (A[] and 

best_Choice[]). 

 

2.2 Dynamic Programming 

Dynamic Programming is a technique for solving problems whose solutions satisfy recurrence 

relations with overlapping sub problems. Dynamic Programming solves each of the smaller sub 

problems only once and records the results in a table rather than solving overlapping sub 
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problems over and over again. The table is then used to obtain a solution to the original problem. 

The classical dynamic programming approach works bottom-up[2]. 

 

To design a dynamic programming algorithm for the 0/1 Knapsack problem, we first need to 

derive a recurrence relation that expresses a solution to an instance of the knapsack problem in 

terms of solutions to its smaller instances. Consider an instance of the problem defined by the 

first I items, 1≤i≤N 

Weights w1,, wi  

Values v1,, vi, 

And knapsack capacity j,1 ≤ j≤ Capacity. 

 

Let Table[i, j] be the optimal solution of this instance (i.e. the value of the most valuable sub- sets 

of the first i items that fit into the knapsack capacity of j). We  can divide all the subsets of  the 

first i items that fit the knapsack of capacity    j into two categories subsets that do not include the 

ith item and subsets that include  the  ith  item. This leads to the following recurrence: 

 

 
The goal is to find Table [N, Capacity] the maximal value of a subset of the knapsack. The two  boundary 

conditions for the KP are: 
- The knapsack has no value when there no items included in it (i.e. i = 0). 

Table [0, j] = 0 for j≥0 

- The knapsack has no value when its capacity is zero (i.e. j = 0), because no items can be included in it. 

 

ALGORITHM 

 
   Dynamic Programming (Weights [1 N], Values [1 N], Table [0 ... N, 0 Capacity]) 

   Input: Array Weights contains the weights of all items 

   Array Values contains the values of all items  

Array Table is initialized with 0s; it is used to store the results from the dynamic programming   

algorithm. 

 Output: The last value of array Table (Table [N, Capacity]) contains the optimal solution of the    

problem for  the  given  Capacity  

 

  for i = 0 to N do 

for j = 0 to Capacity if j <Weights[i] then 

Table[i, j] ← Table[i-1, j] else 

Table[i, j] ← maximum Table[i-1, j] AND 

Values[i] + Table[i-1, j Weights[i]]  

return Table[N, Capacity] 

 

In the implementation  of  the  algorithm  in- stead of using two separate arrays  for  the weights 

and the values of  the  items,  we  used one  array  Items  of  type  item,  where  item  is  a structure 

with two fields: weight and value. 

 
To find which items are included in  the  optimal solution, we use the following algorithm: 
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n ← N c ←Capacity 

Start at position Table[n, c] 

While the remaining capacity is greater than 0 do 

If Table[n, c] = Table[n-1, c] then 

Item n has not been included in the optimal solution 

Else Item n has been included in the optimal solution 

Process Item n 

Move one row up to n-1 

      Move to column c - weight (n)  

 

Complexity 

 

 
= Capacity * [1+1+1++1] (N times) 

= Capacity * N 

=O(N*Capacity) 

 
Thus, the complexity of the Dynamic Programming algorithm is O (N*Capacity). In terms of 

memory, Dynamic Programming requires a two dimensional array with rows equal to the number 

of items and columns equal to the capacity of the knapsack. This algorithm is probably one of the 

easiest to implement because it does not require the use of any additional structures.  

 

 
2.3 Greedy Algorithm 

 

ALGORITHM (Weights [1 N], Values [1 N]) 

  Input: Array Weights contains the weights of all items  

  Array Values contains the values of all items 

 Output: Array Solution which indicates the items are included in the knapsack (1) or not(0) 

Integer CumWeight 

Compute the value-to-weight ratios ri=vi/wi, i = 1, , N, for the items given Sort the items 

in non-increasing order of the value-to-weight ratios 

for all items do 

if the current item on the list fits into the knap- sack 

then place it in the knapsack else 

proceed to the next one 

 

Complexity 

 

1. Sorting by any advanced algorithm is O(NlogN) 

N 

2. Ȩ1=[1+1+1.1] (N times)=N=O(N) 

i=0 

From (1) and (2), the complexity of the greedy algorithm is, O(NlogN) + O(N) = O(NlogN). In 

terms of memory, this algorithm only requires a one dimensional array to record the solution 

string. 

 

 

3 Result Analysis 

The comparative study of the brute force, greedy and dynamic programming algorithms shows 

that the complexities of these algorithms are as shown bellow in the table. Therefore we can say 

that Dynamic algorithm is having less time complexity than other mentioned. 
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If we implemented knapsack problem in c programming for different values of weight and profit. Result of both 

methods gives same optimal solution and different time. 

 
4 Conclusion 

 
 We conclude that for particular one knapsack problem we can implement two methods greedy and 

dynamic. But when we implemented both method for different data set values then we notice something 

like, we consider comparison parameter as optimal profit or total value for filling knapsack using available 

weight then dynamic and greedy both are gaining same profit. If we consider time then dynamic take less 

amount of time compare with greedy. So we can conclude that dynamic is better than greedy with respect 

to time. 
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