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Abstract 

Stress significantly impacts both mental and physical health, emphasizing the need for a reliable, real-time, 

and scalable detection system. Traditional approaches, such as self-reported questionnaires, are often 

subjective and lack immediacy. This research presents a machine learning-based framework for stress 

detection using physiological signals—specifically heart rate variability (HRV), electrodermal activity 

(EDA), and respiration rate (RESP)—captured through wearable sensors. The WESAD dataset is used for 

extensive data preprocessing and feature extraction, followed by the implementation of three classification 

models: Random Forest (RF), Support Vector Machine (SVM), and Deep Neural Network (DNN). Model 

performance is evaluated using leave-one-subject-out cross-validation, with metrics such as accuracy, F1-

score, and ROC-AUC. Among the tested models, the DNN achieved the highest accuracy of 91.5% and an 

F1-score of 0.91. These results highlight the effectiveness of wearable sensor-based machine learning 

systems for real-time stress detection and continuous health monitoring. 
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1. INTRODUCTION 

Stress is a growing concern in modern society, associated with numerous mental and physical health issues 

such as depression, anxiety, hypertension, and cardiovascular diseases. The increasing pace of daily life and 

workplace demands contribute to rising stress levels worldwide. Traditional stress detection methods rely on 

self-reported questionnaires and clinical interviews, which are often subjective, time-consuming, and 

unsuitable for continuous monitoring.With advancements in wearable technology, it is now feasible to collect 

physiological data in real-time. Signals such as heart rate variability (HRV), electrodermal activity (EDA), 

and respiration rate (RESP) are strong indicators of stress and can be continuously monitored using wearable 

devices. Coupled with machine learning (ML) techniques, these physiological signals can be analyzed to 

detect stress patterns with high accuracy. This study utilizes the WESAD dataset and compares the 

performance of Random Forest, Support Vector Machine, and Deep Neural Network models to evaluate their 

efficacy in detecting stress. 

2. LITERATURE REVIEW 

The detection of stress using physiological signals has gained significant attention over the past decade, 

especially with the rise of wearable technologies and machine learning methods. This section reviews key 

studies that have explored similar approaches and highlights the gaps that this research aims to address. 

Gjoreski et al. (2016) developed a wearable-based stress recognition system using electrocardiogram (ECG), 

electrodermal activity (EDA), and skin temperature signals. They applied decision trees and support vector 

machines and achieved promising results. However, their work lacked the use of deep learning, which can 

automatically learn complex feature representations from raw data. Schmidt et al. (2018) introduced the 
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WESAD dataset, a benchmark multimodal dataset for stress and affect detection using wearable sensors. 

Their study highlighted the importance of multimodal physiological signals and evaluated several machine 

learning algorithms. However, the study did not explore advanced deep learning models or cross-subject 

validation, which limits generalizability. Sano and Picard (2013) conducted a study using mobile sensors to 

classify stress levels in everyday settings. They used features like EDA, skin temperature, and accelerometer 

data, combined with machine learning classifiers like logistic regression and SVM. While their system 

demonstrated real-world applicability, its accuracy was limited due to uncontrolled environmental variables. 

Another study by Al-Shargie et al. (2017) proposed a hybrid system combining EEG and fNIRS signals for 

stress detection. Although the results were impressive in controlled environments, the sensors used were not 

practical for everyday use due to cost and complexity. Recent advances in deep learning have also been 

explored. A study by Zhang et al. (2020) implemented a Convolutional Neural Network (CNN) on raw 

physiological data, achieving high accuracy. Yet, CNNs often require large datasets and significant 

computational resources, which may not be feasible in all settings. In summary, most existing works either 

rely on traditional machine learning models with handcrafted features or are limited to experimental setups 

without real-time considerations. This study addresses these limitations by: 

• Using wearable-compatible signals (HRV, EDA, RESP), 

• Evaluating both classical and deep learning models (Random Forest, SVM, DNN), 

• Employing leave-one-participant-out cross-validation for better generalization.. 

3. METHODOLOGY 

A. Dataset 

We utilized the WESAD dataset [3], which includes multimodal physiological data from 15 participants 

collected via two wearable devices: the chest-worn RespiBAN and the wrist-worn Empatica E4. The study 

focuses on data from the RespiBAN device due to its higher signal quality, covering three conditions: 

Baseline, Stress, and Amusement. 

B. Preprocessing 

1. Filtering – A Butterworth low-pass filter was applied to remove high-frequency noise. 

2. Segmentation – Continuous data was segmented into non-overlapping 10-second windows. 

3. Normalization – Z-score normalization was used. 

4. Imbalance Handling – SMOTE was applied to balance class distribution in training data. 

C. Feature Extraction 

HRV: RMSSD, SDNN, LF/HF ratio 

EDA: Mean amplitude, peak count, frequency stats 

RESP: Breathing rate, amplitude, variability 

D. Machine Learning Models 

- Random Forest: 50 trees, minimum sample split = 5 

- SVM: RBF kernel, hyperparameters tuned via grid search 

- DNN: 3 hidden layers (128, 64, 32 neurons), ReLU activation, dropout = 0.5, softmax output, Adam 

optimizer (lr = 0.001), 50 epochs, batch size = 32 

E. Evaluation 

Leave-One-Subject-Out Cross Validation (LOSO-CV) was used. The models were evaluated using 

multiple metrics, including Accuracy, Precision, Recall, F1-score, and ROC-AUC.. F1-score was 

prioritized due to class imbalance. 
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4. FINDINGS 

The table below shows how the models performed based on key metrics: 

 

 

 

 

Table  provides a comparative overview of the performance metrics across the three models.

 

Model Accuracy (%) Precision Recall F1-Score 

Random Forest 88.3 0.87 0.89 0.88 

SVM 85.3 0.84 0.86 0.85 

DNN 91.5 0.90 0.92 0.91 
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5. DISCUSSION 

The findings of this study highlight the potential of machine learning techniques to detect stress using 

physiological signals from wearable devices. Among the three models assessed, the Deep Neural Network 

(DNN) showed the best performance with an accuracy of 91.5% and an F1-Score of 0.91. This strong 

performance comes from the DNN's ability to learn complex, non-linear relationships in multimodal 

physiological data. Compared to traditional models like Random Forest and Support Vector Machine, the 

DNN performed better across participants, especially in leave-one-subject-out cross-validation. These results 

align with earlier research, such as Chung et al. [4], which also showed the benefits of deep learning in 

identifying temporal and physiological patterns. However, unlike convolutional neural networks (CNNs), 

often demanding in computing power, the DNN architecture proposed here is lighter, making it a good option 

for real-time stress detection in mobile or embedded systems. Additionally, using SMOTE during training 

helped reduce the effects of class imbalance, resulting in more reliable model performance. Despite these 

positive outcomes, some limitations exist. The dataset used (WESAD) includes only 15 subjects and three 

emotional states, which may not capture the full range of real-world variability. The model's performance 

may also depend on sensor placement, noise, or individual physiological differences. Future research should 

investigate personalization strategies, hybrid deep learning models, and deployment on edge devices to 

enhance scalability and real-time use in healthcare applications. 

6. LIMITATIONS 

• The WESAD dataset comprises data from only 15 participants, which restricts the diversity of the 

sample and limits the generalizability of the results. 

• The dataset includes only three emotional states (baseline, stress, amusement), which may not fully 

represent real-world psychological variability. 

• Sensor-specific noise, placement variability, and individual physiological differences may affect 

signal quality. 

• Real-time deployment feasibility was not tested; the experiments were conducted in an offline 

environment. 

7. CONCLUSION 

This research proposed a machine learning-based framework for detecting stress using physiological signals 

collected from wearable sensors. The study compared three models—Random Forest (RF), Support Vector 

Machine (SVM), and Deep Neural Network (DNN)—using data from the WESAD dataset. Among them, 

the DNN model achieved the highest performance, with an accuracy of 91.5% and an F1-Score of 0.91, 

demonstrating its capability to learn complex patterns from multimodal physiological data.These findings 

highlight the potential of deep learning techniques in developing personalized, non-invasive, and real-time 

stress monitoring systems. While the study focused on offline evaluation, future work will involve real-time 

deployment on wearable or edge devices, personalization across diverse user profiles, and integration into 

mobile health (mHealth) ecosystems for proactive stress management. 

8. FUTURE WORK 

* Incorporate larger, more diverse datasets 

* Develop personalized baseline models 

* Deploy models on mobile/edge devices 

* Integrate real-time user feedback 

* Address privacy and ethical concerns 
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