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ABSTRACT 

 
This paper shows a possibility of harvesting electrical energy from mechanical vibration. In this way, a piezoelectric 

material is used to harvest energy from bridge vibration under a moving load. The response of bridge under moving 

load is studied first, and second the energy harvesting with a piezoelectric element, and third the combination of the 

two phenomena. The bridge is modelled as a simple beam with length l, supported at both the ends, and traversed by 

a force P moving with a constant velocity c. Its behaviour is described by the Euler-Bernoulli differential equation. 

Modal superposition is used to solve this equation, and a transformation is made from displacement coordinate to 

modal coordinate. A new differential equation is obtained and a resolution in the frequency domain by Fourier 

transform and Laplace transform is used to study the deflection of the bridge. A piezoelectric model in one 

dimension is also considered. The model is composed of a seismic mass that compresses all area of piezoelectric 

material. This means that the model is studied in longitudinal mode or mode33. The piezoelectric element is 

connected to a power harvesting circuit modelled as a single resistor R. A transformation in piezoelectric 

constitutive equation gives a differential equation of the electromechanical system. Laplace transform is used to 

solve the equation in frequency domain. The displacement and the generated voltage for the piezoelectric harvester 

are obtained. A mathematical study was done by combining the two models. The idea is to put a piezoelectric 

element directly under the bridge with glue. In this case, the deflection of the bridge is considered as a stress 

applied to the piezoelectric element. Numerical application is chosen for bridge and piezoelectric parameters. 

Results are obtained by varying the position of the harvester, the speed of the moving load and the length of the 

bridge. A maximum power between 99.9 µW and 438.20 µW is obtained with the bridge length between 25 m and 50 

m.  

Keyword: Piezoelectric, Bridge vibration, Energy harvesting, Electrical energy, Fourier and Laplace transform. 

 
1. INTRODUCTION 

Any small vibrations are present around us every day and they are just wasted if not exploited. The idea of this work 

is to look for a way to convert this vibratory energy into usable electrical energy. More sources of the vibratory 

energy are possible, such as mechanical energy caused by industrial machines, cars, and trains. There are also 

vibrations from large infrastructures such as bridge and building. Human movement like foot movement and the 

joints movement are also to be mentioned. A piezoelectricity is one phenomenon capable of converting the small 

vibrations to electrical energy. Research works were already made in this area. Modelling of the stress distribution 

in the power generation module under the traffic in roadway was investigated by Papagiannakis et al. [1]. The 

results show that the energy obtains can drive LED traffic lights and wireless sensors built into the pavement 

structure. Gao, Wang, Cao, Chen and Liu [2] have analysed a piezoelectric harvester placed on a rail to generate 

electrical energy from the acceleration of the rail. They use a cantilevered piezoelectric beam to visualize voltage 

and power. Jingjing Zhao and Zheng You [3] have made use of human motion to obtain electrical energy for a 

power portable sensor. The piezoelectric element is placed in the man’s shoe. The energy harvesting under bridge 

vibration has also been the subject of several works. Jacopo Bonari and Paolo Valvo [4] have studied possibility of 



Vol-4 Issue-5 2018       IJARIIE-ISSN(O)-2395-4396 
 

9184 www.ijariie.com 789 

using of piezoelectric material to harvest the energy under a vibrations induced in bridges when vehicles go accross. 

They considered a cantilever beam of a piezoelectric element with the same first frequency of a bridge in numerical 

studies. Ye Zang [5] worked on the piezoelectric harvesting in infrastructures of a particular bridge structures. He 

use a harvester based on cantilever for the simulation. The results show the interests of using energy harvester in the 

field of civil engineering. In this work, a mathematical resolution of piezoelectric harvesting under bridge vibration 

is studied. The bridge model and piezoelectric harvesting model are studied separately first. The bridge is modelled 

as a simple beam with a vehicle moving with a constant speed crossing it. And then a piezoelectric harvester model 

is used to investigate the longitudinal deformation mode for one degree of freedom. And finally, the two models are 

combined to constitute the harvesting system. 

2. MATHEMATICAL MODELLING OF THE BRIDGE RESPONSE UNDER CONSTANT 

SPEED MOVING LOAD 

The bridge is modelled as a simple beam supported at both the end. The bridge has a length l and a load is moving 

across it with a constant speed c, from left to right. Only gravitational effect is considered because the weight of load 

is small compared to that of the beam. The beam has zero displacement at both ends. With this assumption, the 

governing differential equation of the model is described by of Bernoulli-Euler equation. The model is shown in 

Figure 1. 

 

 

Fig -1: Bridge under a force P 

 

At the time t and at the position x, the displacement or deflection 𝑧(𝑥, 𝑡)  of the bridge is giving by equation: 

𝐸𝐼 
𝜕4𝑧(𝑥, 𝑡)

𝜕𝑥4
 +  𝜇 

𝜕2𝑧(𝑥, 𝑡)

𝜕𝑡2
+ 2𝜇𝜁𝑛

 𝜔𝑛
𝜕  𝑧(𝑥, 𝑡)

𝜕𝑡  
 =  𝑝(𝑥, 𝑡)                                                                                          (1) 

Where𝐸, 𝐼, 𝜇, 𝜁𝑛
 , 𝜔𝑛 are respectively the Young’s modulus , the moment of inertia of the beam cross section, the 

mass per unit length, the damping coefficient of the beam and the natural frequency of the beam for n
th

  mode. 

p(x, t) can considered as : 

𝑝(𝑥, 𝑡) = {
𝛿 (𝑥 − 𝑐𝑡)𝑃, 0 ≤ 𝑡 ≤ 𝑡𝑑  𝑎𝑣𝑒𝑐 𝑡𝑑 = 𝑙/𝑐

0, 𝑡𝑑 > 0
                                                                                                  (2) 

Using modal superposition, the solution of equation (1) can resolve with series form as: 

𝑧(𝑥, 𝑡) =  ∑𝑍𝑛 (

∞

𝑛=1

𝑡) 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑙
)                                                                                                                                             (3) 

It is a transformation from displacement coordinates 𝑧(𝑥, 𝑡) to the modal coordinates  𝑍𝑛(𝑡), 
where   𝑍𝑛(𝑡)  is the undamped deflection mode shape n in the case of undamped free vibration. 

The use of equation (3) in (1) and a mathematic manipulation [7] give differential equation in modal coordinates. 

𝑍̈𝑛(𝑡)  + 2𝜁𝑛
 𝜔𝑛 𝑍̇𝑛(𝑡) +   𝜔𝑛

2 𝑍𝑛(𝑡) =
2𝑃

𝜇𝑙
sin(𝑛ϕ𝑡) = 𝑓𝑛(𝑡)                                                                                          (4) 

Where 𝜔𝑛
2   =  

𝐸𝐽

𝜇
(
𝑛𝜋

𝑙
)
4

 , ϕ =  
𝜋𝑐

𝑙
   witches are respectively the natural frequency and the excitation frequency. 
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2.1 Frequency domain solution 

Laplace transform of equation (4) with zero as the initial conditions give [7]: 

 (𝑠2𝑍𝑛(𝑝) − 𝑠 𝑍𝑛(0) − 𝑍𝑛̇(0))  +  2𝜁𝑛
 𝜔𝑛(𝑠 𝑍𝑛(𝑝)  −  𝑍𝑛(0) )  +  𝜔𝑛

2(𝑍𝑛(𝑠))  =  𝐹𝑚
 (𝑠) 

𝑍𝑛(𝑠)  =  
1

(𝑠2 +  2𝜁𝑛
 𝜔𝑛𝑠 + 𝜔𝑛

2)
 ∗ 𝐹𝑛

 (𝑠) 

with  𝑠 =  𝑗𝜔  

𝑍(𝜔) =
1

(−𝜔2 +  2𝑗𝜔𝜁𝑛
 𝜔𝑛 + 𝜔𝑛

2)
 ∗ 𝐹𝑛

 (𝜔)                                                                                    

 

The Fourier transforms 𝐹𝑛
 (𝜔) in the right hand side of equation (4) is: 

𝐹𝑛
 (𝜔)  =  

1

√2𝜋
∫𝑓𝑛(𝑡) 𝑒

−𝑗𝜔𝑡  𝑑𝑡 

              =
1

√2𝜋
 
2𝑃

𝑙𝜇
 
1

2𝑗
  (
𝑒𝑗(𝑛ϕ− 𝜔)𝑇

𝑗(𝑛ϕ −  𝜔)
+ 
𝑒𝑗(𝑛ϕ− 𝜔)𝑇

𝑗(𝑛ϕ + 𝜔)
− 

1

𝑗(𝑛ϕ −  𝜔)
+ 

1

𝑗(𝑛ϕ + 𝜔)
) 

 

The solution of equation (1) in frequency domain is: 

𝑧(𝑥, 𝜔) =  ∑
1

(−𝜔2 +  2𝑗𝜔𝜁𝑛
 𝜔𝑛 + 𝜔𝑛

2)
 
1

√2𝜋
 
2𝑃

𝑙𝜇
 
1

2𝑗
  

∞

𝑛=1

                                                                                                 (5) 

                 ∗ (
𝑒𝑗(𝑛ϕ− 𝜔)𝑇

𝑗(𝑛ϕ −  𝜔)
+ 
𝑒𝑗(𝑛ϕ− 𝜔)𝑇

𝑗(𝑛ϕ + 𝜔)
− 

1

𝑗(𝑛ϕ −  𝜔)
+ 

1

𝑗(𝑛ϕ + 𝜔)
)  𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
) 

 

3. MATHEMATICAL MODELLING OF PIEZOELECRIC 

A piezoelectric model in one dimension shown in Figure 2 is considered. The model is composed of a seismic mass 

that compresses all area of piezoelectric material. The deformation of piezoelectric element has a same direction of 

applied electric field. This means that the model is studied in longitudinal mode or mode33 [6]. The piezoelectric 

element is connected to a power harvesting circuit modelled as a single resistor R. 

 

Fig -2: Electromechanical model of piezoelectric harvesting in 1D 

 

For this model, the piezoelectric constitutive equation [6] in direct and inverse piezoelectric effects can be written 

as: 
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{ 
𝑇3 = 𝐶33

𝐸 . 𝑆3 − 𝑒33
𝑡  . 𝐸33

 
𝐷3 = 𝑒33. 𝑆3 + 𝜀33

𝑆 . 𝐸3 
                                                                                                                                                       (6)  

D, E, S, T, e, 𝜀, 𝐶𝐸, are respectively : the electric displacement which is produced, the applied electric field, the 

applied strain, the developed stress, the piezoelectric stress constant, the electric permittivity and the stiffness 

matrix. The superscript E and S are parameters at a constant electric field and strain. 

Equation (6) can be transformed with a following definition:  

 strain related to  y and the thickness  h : 𝑆3 = 
𝑦

ℎ
 

 electric field related to voltage v and the thickness  h : 𝐸3 = 
𝑣

ℎ
   

 mass per cross section: 𝑚𝑡 = 
𝑚

𝐴 
 , where m is a total mass of the system 

 stress which is the force per area : 𝑇3 = −  
𝑚(𝑦̈+ 𝑦̈𝑏)

𝐴
 = − 𝑚𝑡(𝑦̈ +  𝑦̈𝑏) 

 electric displacement of the charge per unit area : 𝐷3 = 
𝑞

𝐴
  

Equation (6) can be rewritten as: 

{ 

𝑚𝑡𝑦̈  +  𝐶33
𝐸
𝑦

ℎ
+ 𝑒33

𝑣

ℎ
=  − 𝑚𝑡𝑦̈𝑏

 

𝐷3 = 𝑒33
𝑦

ℎ
− 𝜀33

𝑆
𝑣

ℎ
=  
𝑞

𝐴
 

                                                                                                                                      (7) 

 With other definitions of parameters: 

 the electromechanical coupling 𝜃 = 
𝑒33 𝐴 

ℎ
 

 the stiffness  𝑘 =  
𝐶33
𝐸  𝐴 

ℎ
 

 the capacitance 𝐶𝑝 = 
𝜀33
𝑆  𝐴 

ℎ
 

 the developed voltage 𝑣 =  𝑖 𝑅 =  
𝑑𝑞 

𝑑𝑡
 𝑅 

 the viscous damping 𝑐𝑑  proportional to velocity 𝑦̇ 

 

Using the last parameters in (7), the final piezoelectric model equation is: 

 { 

𝑚𝑦̈  + 𝑐𝑑𝑦̇ +  𝑘𝑦 −  𝜃𝑣 =  − 𝑚𝑦̈𝑏 
 

𝜃𝑦̇  +  𝐶𝑝𝑣̇  +  
1

𝑅
𝑣 = 0 

                                                                                                                                (8) 

3.1 Frequency domain solution of piezoelectric model 

Laplace transform [7] of the first equation in (8) with the initial condition give: 

𝑚  [𝑠2 𝑌(𝑠) − 𝑠𝑦(0) − 𝑦̇(0)]  + 𝑐𝑑[𝑠𝑌(𝑠) − 𝑦(0)]  + 𝑘𝑌(𝑠) −  𝜃𝑉(𝑠) =  −𝑚 [𝑠
2 𝑌𝑏(𝑠) − 𝑠𝑦𝑏(0) − 𝑦̇𝑏(0)]  

With 

 𝑠 = 𝑗𝜔 

 natural frequency: 𝜔ℎ = √
𝑘

𝑚
  

 the damping: 𝜁ℎ = 
𝑐𝑑

2𝑚𝜔ℎ
  , 

The equation can be rewritten as: 

(− 𝜔2 + 2𝑗𝜔𝜁ℎ𝜔ℎ + 𝜔ℎ
2)𝑌(𝜔)  − 

𝜃

𝑚
𝑉(𝜔) =   𝜔2 𝑌𝑏(𝜔) 

Dividing by 𝜔ℎ
2, and Φℎ =  

𝜔 

𝜔ℎ
  ,  the equation take the form : 
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[(1 − Φℎ
2) + 2𝑗𝜁ℎΦℎ]𝑌(𝜔)  −  

𝜃

𝑘
𝑉(𝜔) =   Φℎ

2 𝑌𝑏(𝜔)                                                                                                     (9) 

Laplace transform for the second equation with the initial condition give [7]: 

𝜃𝑠[𝑠𝑌(𝑠) − 𝑦(0)] + 𝐶𝑝[𝑠𝑉(𝑠) − 𝑣(0)] +    
1

𝑅
𝑉(𝑠) = 0 

Let  𝑠 = 𝑗𝜔, and dividing by 𝐶𝑝𝜔ℎ
   : 

𝑗
𝜔

𝜔ℎ
 

𝜃

𝐶𝑝
𝑌(𝜔)  +  (𝑗

𝜔

𝜔ℎ
 +

1

𝜔ℎ
 𝐶𝑝𝑅

 ) 𝑉(𝜔) = 0 

Let   𝛽 =  𝜔ℎ
 𝐶𝑝 𝑅 

𝑗Φℎ

𝛽𝜃

𝐶𝑝
𝑌(𝜔)  +  (𝑗Φℎ𝛽 + 1 )𝑉(𝜔) = 0                                                                                                                             (10) 

Equations (9) and (10) can be written in the matrix form: 

[
 
 
 (1 − Φℎ

2) + 2𝑗𝜁ℎΦℎ − 
𝜃

𝑘

𝑗Φℎ

𝛽𝜃

𝐶𝑝
(𝑗Φℎ𝛽 + 1 )

]
 
 
 

 [

𝑌(𝜔)
 
 

𝑉(𝜔)

] =  [

Φℎ
2  𝑌𝑏(𝜔)
 
 
0

]                                                                                     (11) 

This equation gives respectively the displacement y and the voltage developed v with 𝑌(𝜔) and 𝑉(𝜔) in frequency 

domain. In other words, this is the matrix form of piezoelectric harvesting in frequency domain for one dimension. 

4. MATHEMATICAL MODELLING FOR THE TWO MODELS: PIEZOELECTRIC ELEMENT 

MOUNTED UNDER THE BRIDGE 

The system studied here is the combination of two models previously discussed. The idea is to use a vibration of the 

bridge which is obtained with the moving load in it. This vibration is considered as the input stress to the 

piezoelectric energy harvester put under the bridge. The system is shown in Figure 3. 

 

Fig - 3: Model « bridge piezoelectric harvesting » 

4.1 Equation for the model 

The displacement of the bridge z(𝑥, 𝜔) presented in equation (5) is nothing else than the base movement 𝑌𝑏(𝜔)  in 

the piezoelectric harvesting presented in equation (11). 

z(x, ω) ≈  𝑌𝑏(𝜔)                                                                                                                                                                        (12)  

𝑌𝑏(𝜔) is obtained by matrix calculation using the equation (11). Let M be the matrix. 
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M=[
(1 − Φℎ

2) + 2𝑗𝜁ℎΦℎ − 
𝜃

𝑘

𝑗Φℎ
𝛽𝜃

𝐶𝑝
(𝑗Φℎ𝛽 + 1 )

] 

det𝑀 =  (𝑗Φℎ)
3𝛽 + (2𝜁ℎ𝛽 + 1)(𝑗Φℎ)

2 + (𝛽 +
𝜃2

𝑘𝐶𝑝
𝛽 + 2𝜁ℎ) (𝑗Φℎ) + 1 =  𝑑𝑀(𝑗𝜔) 

Where det M # 0, equation (11) can be writing by: 

𝑀𝑀−1  [

𝑌(𝜔)
 
 

𝑉(𝜔)

] = 𝑀−1  [

Φℎ
2 𝑌𝑏(𝜔)
 
 
0

] =  
1

𝑑𝑀
[
 
 
 (𝑗Φℎ𝛽 + 1 )  

𝜃

𝑘

−𝑗Φℎ

𝛽𝜃

𝐶𝑝
(1 − Φℎ

2) + 2𝑗𝜁ℎΦℎ
]
 
 
 

[

Φℎ
2 𝑌𝑏(𝜔)
 
 
0

] 

{
 

 
Y(ω) =  (jΦhβ + 1 )Φh

2 Yb(ω)/dM
 

V(ω) = −jΦh
3
βθ

Cp
 Yb(ω)/dM

 

𝑌𝑏(𝜔) can give by: 

𝑌𝑏(𝜔) =  −
𝐶𝑝𝑑𝑀

𝑗Φℎ
3𝛽𝜃

 𝑉(𝜔)                                                                                              

Taking the superposition of the first three vibration modes of the bridge as solution, the equation (12) becomes: 

−
𝐶𝑝𝑑𝑀

𝑗Φℎ
3𝛽𝜃

 𝑉(𝜔)  = ∑
1

(−𝜔2 +  2𝑗𝜔𝜁𝑛
 𝜔𝑛 + 𝜔𝑛

2)
 
1

√2𝜋
 
2𝑃

𝑙𝜇
 
1

2𝑗
  

3

𝑛=1

                                                                                  (13) 

                 ∗ (
𝑒𝑗(𝑛ϕ− 𝜔)𝑇

𝑗(𝑛ϕ −  𝜔)
+ 
𝑒𝑗(𝑛ϕ− 𝜔)𝑇

𝑗(𝑛ϕ + 𝜔)
− 

1

𝑗(𝑛ϕ −  𝜔)
+ 

1

𝑗(𝑛ϕ + 𝜔)
)  𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
)                             

4.2 Recovered energy 

The energy obtained here is the power output giving by the formula: 

|𝑃| =
|𝑉|2

𝑅
  

 V is the voltage obtained in the piezoelectric element with equation (13). It  is expressed by: 

                𝑉(𝜔) = − 
𝑗Φℎ

3𝛽𝜃

𝐶𝑝𝑑𝑀
 ∑

1

(−𝜔2 +  2𝑗𝜔𝜁𝑛
 𝜔𝑛 + 𝜔𝑛

2)
 
1

√2𝜋
  
2𝑃

𝑙𝜇
 
1

2𝑗
  

3

𝑛=1

          

                 ∗ (
𝑒𝑗(𝑛ϕ− 𝜔)𝑇

𝑗(𝑛ϕ −  𝜔)
+ 
𝑒𝑗(𝑛ϕ− 𝜔)𝑇

𝑗(𝑛ϕ + 𝜔)
− 

1

𝑗(𝑛ϕ −  𝜔)
+ 

1

𝑗(𝑛ϕ + 𝜔)
)  𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑙
)                                                  (14)  

 R is a resistor set on the power harvesting circuit. 

 

5. APPLICATION 

5.1 Data examples 

The bridge is considered a under a moving load of 30000 N. Table 1 shows several bridge parameters. 

For the harvester, the characteristics of a PVDF are adopted and listed in Table 2 [9]. The resistance of the power 

harvester circuit has been set at 50 kΩ. 
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Table - 1: Bridge parameters [8] 

Bridge parameters values 

Mass per unit length, µ 4406.78 kg/m 

Bending stiffness, EJ 106 GN/ m
2
 

 

Table - 2: PVDF characteristics [9] 

Properties Symbol Values Units 

Young’s modulus  Y33 0.9 10
9
 N/m

2 

Stiffness c33 1.05 10
9
 Pa 

Piezoelectric charge constant d33 -34  10
-12

  C/N 

Piezoelectric stress constant e33 35.7 10
-3

 C/ m
2
 

Area of piezoelectric element A 0,2 x  0,1 m
2
 

Thickness  h 515 10
-6

 m 

Capacitance Cp 2.6 10
-9

 F 

Damping ratio 𝜁 0,15  

Density 𝜌 1470  kg/m
3
 

Relative dielectric constant  k 7.6  

Frequency 𝜔ℎ 22 rad/s 

 

5.1 Results 

The use of these parameters values in equation (14) can give the power output as a function of the position of the 

harvester, the velocity of the vehicle and the length of the bridge. Four types of bridge with a various vehicle speeds 

are studied. The results are shown in Table 3. 

Table - 3: Table of power with parameters considered 

Speed 

(km/h) 
Maximum power  

𝑉2

𝑅 
, (10−6𝑊) 

For l = 25 m 

x=1/4 x=1/2 x=2/3 x=3/4 

36 49.951 99.915 75.004 49.951 

54 47.030 94.053 70.602 47.021 

72 46.940 93.867 70.479 46.946 

90 48.005 96.010 72.105 48.036 
 

Speed 

(km/h) 
Maximum power  

𝑉2

𝑅 
, (10−6𝑊) 

For l = 30 m 

x=1/4 x=1/2 x=2/3 x=3/4 

36 69.886 139.77 104.83 69.886 

54 74.476 148.95 111.71 74.476 

72 74.244 148.49 111.37 74.244 

90 71.085 142.17 106.63 71.085 
 

 

Speed 

(km/h) 
Maximum power  

𝑉2

𝑅 
, (10−6𝑊) 

For l = 35 m 

x=1/4 x=1/2 x=2/3 x=3/4 

36 101.18 202.36 151.82 96.638 

54 93.938 187.88 140.96 89.723 

72 106.05 212.11 159.14 101.30 

90 101.26 202.52 151.95 96.719 
 

 

Speed 

(km/h) 
Maximum power  

𝑉2

𝑅 
, (10−6𝑊) 

For l = 50 m 

x=1/4 x=1/2 x=2/3 x=3/4 

36 187.83 375.61 281.82 187.86 

54 197.41 394.90 296.41 197.63 

72 192.57 384.86 288.44 192.15 

90 218.97 438.20 329.03 219.41 
 

 

Figure 4 and Figure 5 shows a voltage obtained, a maximum power and the displacement plots of the corresponding 

bridge. The example considered is in the quarter and half position of bridge. His length is l = 50 m and the vehicle 

speed is 90 km/h. 
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Fig - 4: Displacement of bridge, voltage obtained and power output 

with l = 50 m, x= 12.5 m and v = 90 km/h. 

 

Fig - 5: Displacement of bridge, voltage obtained and power output 

with l = 50 m, x= 25 m and v = 90 km/h. 
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5.2 Interpretation of results 

From the obtained results, it is found that: 

 The power output is the best in the half length of the bridge regardless of the length and speed of the 

vehicle. 

 The power value increases as the length of the bridge increases. It means that the power is proportional to 

the speed.  

 On the one hand, a shorter bridge is more promising with a slower speed and on the other hand, a longer 

bridge gives more energy with a faster speed. Example for the length l = 25 m, the maximum power of 99.9 

µW is obtained at a speed c = 36 km/h, and for the length   l = 50 m, the maximum power is 438.20 µW 

with a speed c = 90 km/h. 

 

5. CONCLUSION 

Piezoelectric energy harvester from bridge vibrations caused by a constant moving load is shown in this work. The 

response of bridge under moving load and the piezoelectric harvester are studied separately in frequency domain. 

Then the two models are combined to make up a harvesting system. Mathematical resolutions of this model in 

frequency domain show that an electric energy can be obtained. Numerical application is done to know the order of 

power output. For the displacement of bridge, the superposition of the first three mode of vibration is choosing. The 

voltage obtained in power harvester circuit with a fixe resistor 50 KΩ is 2,2351 at 4,6808 volts. Which means that 

the power output is between 99,9 µW  and 438.20 µW. This energy can be processed and storage to power a LED 

traffic light in the bridge for future works. 
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