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ABSTRACT 

Managing distribution supply chain activities is of crucial importance to ensure the efficient and satisfactory 

delivery of products to end customers. Aligning system structure, replenishment levels, and accurate demand 

forecasting optimizes distribution, enhances customer satisfaction, and reduces associated costs. 

 

1. INTRODUCTION 

 

To cope with a competitive and uncertain economic environment, such as the one in which companies 

find themselves today, it will be challenging to meet the increasingly diverse and demanding customer 

expectations. 

 

Various factors, such as road conditions, geographical distance, product availability in stock, available 

workforce, as well as natural disasters, can influence supply chain operations. These elements can 

disrupt logistics operations or cause damage to infrastructure, warehouses, and inventory. Furthermore, 

customer orders exhibit high variability, frequent disruptions occur in the supply chain, and delivery 

times are not met. 

 

Given that business responsiveness is no longer sufficient, companies must proactively seek 

competitive advantages. 

 

The distribution of finished products at the right time, in the right place, in the right quantity, while 

meeting the requirements of end customers, and at the lowest cost," as emphasized by Dominguez and 

Lashkari (2004). One of the benefits of the supply chain is sales optimization. This optimization 

involves strategically positioning products in optimal quantities, at the right locations, and at the ideal 

timing, all while minimizing costs. 

The effective management of the supply chain is a strategic challenge for companies seeking to 

maintain their competitiveness in a complex and ever-evolving business environment. Customer 

satisfaction has thus become the ultimate measure of success. 
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How can companies model and optimize their complex supply chain using artificial intelligence, reduce 

overall logistic costs, and optimize inventory levels, all while ensuring optimal service to their 

customers? 

 

 What approaches and methodologies are most suitable for addressing these complex challenges? 

The aim of this study is to achieve the following objectives: 

 Determine, based on a supply chain model, for each period and depending on forecasted customer 

orders, the minimum quantity to be supplied from central warehouses to fulfill all customer orders 

while optimizing multi-level supply chain costs. 

 Deduce the products to replenish in each intermediate warehouse and distribution depot. 

The remainder of this article is organized as follows: Section 2 presents various previous works related to 

this issue. Section 3 elaborates on the application models we used to find solutions. Finally, we will 

conclude this article and outline our future work. 

 

2. RELATED WORK 

These past two decades have been marked by abundant literature on the integrated optimization of two or 

more links of the supply chain. Thomas and Griffin (1996) [1] categorize these works into three categories: 

supplier-customer integration, production-distribution integration, and distribution-inventory management 

integration. This last category, known as IRP, is defined by Cambell et al. (1998) as the optimization of the 

repeated distribution of a product from a central warehouse to a set of retailers or customers over a finite or 

infinite planning horizon. 

Golden et al. (1984) addressed the IRP problem by adopting a different heuristic, which involves 

determining the locations to visit each day and generating the corresponding routes. They considered a 

finite-capacity plant supplying a set of customers primarily characterized by a stochastic demand rate. The 

objective of their model was to ensure the distribution of products from the warehouse to customers while 

minimizing transportation and storage costs and reducing stockouts at the end of periods [2]. They 

formulated their problem as a nonlinear integer program and proposed an approximation method to solve it. 

The Stochastic Inventory Routing Problem (SIRP) has been modeled using a Markov decision process in 

various works, such as those by Minkoff (1993), Kleywegy et al. (2002), and Kleywegt et al. (2004). Some 

research works model multi-level supply chains based on classic inventory management policies, including: 

Policies with continuous review: these include policies (s, S), (s, Q), and (S-1, S), where the stock level is 

continuously monitored. 

Policies with periodic review: these include policies (R, s, S), (R, S), and (R, Q), where the stock level is 

periodically reviewed. The parameters s, Q, S, R, and T represent the reorder point, order quantity, 

replenishment level, and review interval, respectively. Hence, the concept of emergency transshipment is 

found as a form of cooperation among retailers to cope with stockout situations [3]. 

Research has shown that inventory management strategies are effective in enhancing the efficiency of the 

supply chain, reducing overall supply chain costs (Achabal et al., 2000; Jung, Chang, & Park, 2005) [1], and 

that communication among supply chain members is beneficial for constructing better forecasts and 

improving competitiveness (Vachon, Halley, Beaulieu, 2009). 

An optimization model is a decision support tool with the objective of finding the optimal and feasible 

solution to a given problem. In this context, the objective function is either maximized or minimized by 

adjusting decision variables subject to constraints (Ding et al., 2020). The objective function of the model 

provides insights into the economic aspect of the network, including sales, profit, or cost. From a logistics 

perspective, it's the decisions the model makes to achieve such an objective value that we are interested in 
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[7]. Optimization, taking into account final customer demand forecasts, is being developed in planning to 

optimize inventory, enhance production stability, resource planning, and improve customer service rates 

(Bhaskaran, 1998; Grave et al., 1998; Towill, 1991). 

In the study conducted by Rabenasolo et al. (2000), it was observed that, for a nonzero transportation lead 

time, changes in demand alone generate a significant variation in stock at the interface between the two 

links. 

In a supply chain, many works have focused on forecasting customer demand. Most of them use time series 

processing algorithms. Traditional demand forecasting methods, based on elementary and/or advanced 

statistical methods, have proven useful in numerous cases (Kuo, 2001) [1]. In some cases, more recent 

statistical methods, such as genetic algorithms based on fuzzy networks, have improved the results provided 

by traditional methods, and research has shown that simple statistical methods tend to amplify the bullwhip 

effect (Carbonneau et al., 2008). Given the previous constraints, ARIMA is widely used for forecasting 

customer demand. 

The ARIMA model considers data as primarily a function of time and is preferred when seeking the general 

trend of variations without considering factors influencing demand [8]. Researchers have developed more 

sophisticated methods than traditional tools. For example, FerBar et al. (2009) achieved better results with 

exponential smoothing by incorporating a wavelet denoising step. 

In the 1990s, Leung (1995) identified artificial neural networks (ANN) as potentially suitable for demand 

forecasting in the supply chain. The architecture known as the multilayer perceptron with backpropagation is 

commonly used (Beccali, Cellura, Lo Brano, & Marvuglia, 2004) [9]. Another modification frequently 

mentioned in the literature to improve decision-making processes is to integrate a fuzzy component (Chang 

et al., 2011; Efendigil et al., 2009) to avoid binary yes/no decisions (Barajas & Agard, 2004) [6]. After being 

properly configured with historical data, artificial neural networks (ANN) can be used to accurately 

approximate any measurable function. 

Su and Wong (2008) studied a dynamic and stochastic sizing problem under the bullwhip effect. The authors 

proposed an optimization solution using the ant colony method while discussing the solution's quality and 

the relationship between the bullwhip effect and the replenishment cycle [10]. To reduce the bullwhip effect 

and net inventory amplification, Devika et al. (2016) applied a new multi-objective hybrid evolutionary 

optimization approach (MOHES). 

Pai and Lin (2005) provided outstanding results even in the presence of noise or missing information. They 

combined support vector machines (SVM) with ARIMA and found that the hybrid model performed better 

than SVM or ARIMA [1]. 

Other research enriches the concept of supply chain performance by demonstrating that the operational 

performance of decentralized supply chains can be significantly enhanced through a collaborative 

forecasting improvement source (ARIMA with genetic algorithm) [10]. Brahim and Bensaadie (2023) 

propose two new hybrid deep learning models applied to multi-step ahead time series forecasting. This 

includes a combination of Convolutional Neural Network, Gated Recurrent Unit network (GRU), and Deep 

Temporal Convolutional Network (TCN) to improve time series forecasting accuracy. 

Time series analysis and forecasting have not yet reached their zenith and remain a domain dominated by 

statistical models today. Recent results from the M4 forecasting competition indicate that both worlds are 

converging, giving rise to hybrid approaches that combine statistical models and machine/deep learning 

models. It is worth noting that in the case of building global models when hundreds of interconnected time 

series are available, DeepAR enables the creation of highly performing models for both point forecasts and 

probabilistic forecasts [12]. 
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Our work focuses on the modeling, dynamic optimization, and prediction of the complex supply chain using 

historical order data and artificial intelligence methods, including: 

 The combination of ARIMA and DeepAR for demand forecasting. 

 Multilayer neural networks for supply chain optimization 

 

 

3 BASIC MODELING PRINCIPLES 

3.1 Time Series with ARIMA 

The ARIMA model is defined by three components: AR(p), I(d), and MA(q). The notation 

ARIMA(p, d, q) is used to describe the complete ARIMA model, which is given by the 

following equation: 
    

𝑦𝑡
′ = 𝑢 + ∑Φ𝑖𝑦𝑡−𝑖

′ + 𝜖𝑡 + ∑𝜃𝑖𝜖𝑡−𝑖

𝑃

𝑖=1

𝑃

𝑖=1

 

Where : 

– yt
′ is the stationary time series after differencing of order d. 

– µ is the mean of the time series. 

– ϕi are the autoregressive coefficients for lags i=1,2,...,p 

– θi are the moving average coefficients for lags i=1,2,...,q 

– ϵt is the white noise term 
 

The methodology of Box and Jenkins allows determining the suitable ARIMA model for modeling a time series, 

so it is about building a model that best captures the behavior of a time series. This methodology suggests four 

steps: 

 Identification 

 Estimation 

 Validation 

 Model Forecasting 

Identification involves specifying the three parameters p, d, q of the ARIMA(p, d, q) model. Model stationarity is 

first tested through a graphical study, autocorrelation, and an augmented Dickey-Fuller test. If the series is not 

stationary, it should be transformed into stationarity. The order of integration "d" is the number of times the 

original series has been differenced to achieve stationarity. Autocorrelations and partial autocorrelations are used 

to estimate the orders p and q for the AR and MA models: 

 Partial autocorrelations are zero beyond order p. 

 Autocorrelations are zero beyond order q. 

Simple Dickey Fuller Test: Dickey and Fuller were the first to provide a set of formal statistical tools for detecting 

the presence of a unit root in a first-order autoregressive process. This test is used to test the hypothesis: 
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{
𝐻0: 𝑇ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 ℎ𝑎𝑠 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡         

𝐻1: 𝑇ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑎𝑣𝑒 𝑎 𝑢𝑛𝑖𝑡 𝑟𝑜𝑜𝑡
 

In 1981, Dickey and Fuller extended this testing procedure to autoregressive processes of order p, and it became 

the Augmented Dickey-Fuller test (ADF). ACF and PACF plots (Figure 1) can be analyzed to specify the values 

of the seasonal model by examining the correlation of seasonal lags. 

 

Figure 1. ACF and PACF plots 

Often it is not easy to determine a single model. After estimating the different ARIMA models, it is 

now necessary to validate these models, using, on the one hand, tests of parameter significance for the 

coefficients, and, on the other hand, an analysis of the estimated residuals. The model coefficients 

must be significantly different from zero, which is achieved by using the classic Student's t-test.  

The null hypothesis is rejected :   𝐻0: 𝜃𝑗 = 0, 𝑖𝑓 |𝑡𝑐| > |𝜏𝑇−𝑞
𝛼 |, 𝑤ℎ𝑒𝑟𝑒 |𝑡𝑐| = |

𝜃̂

𝜎̂𝜙̂
| 

To ensure that the obtained models are valid, it is necessary to check that the estimated residuals 

follow a white noise pattern. The information criterion used is: 

1. Akaike (1969) :     𝐴𝐼𝐶(𝑝, 𝑞) = log(𝜎̂𝜖
2) + 2

𝑝+𝑞

𝑇
 

2. Schwarz (1977) :   𝐵𝐼𝐶(𝑝, 𝑞) = log(𝜎̂𝜖
2) + (𝑝 + 𝑞)

𝑙𝑜𝑔𝑇

𝑇
 

3. Hannan_Quinn(1979) :  𝜑(𝑝, 𝑞) = log(𝜎̂𝜖
2) + (𝑝 + 𝑞)𝑐 (

log(log(𝑇))

𝑇
) , 𝑎𝑣𝑒𝑐 𝜖 > 2 

The selection of an ARIMA model (p, d, q) results from the following four main steps: 

Step 1: Identifying the initial values of the orders p, d, and q is based on the study of simple and partial 

correlograms. 

Step 2: Estimating the parameters θi and φi is based on maximizing likelihood functions using iterative 

procedures. 

Step 3: Once the parameters are estimated, the estimation results should be examined with reference to tests 

for the significance of the parameters and the quality of the residuals (absence of autocorrelation). 

Step 4: The choice of the most appropriate model among all estimated models is made based on two criteria: 

Akaike (AIC) and Schwartz (SC), which measure the quality of the model's approximation to reality. 
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Step 5 (Forecasts): Once the ARIMA model is estimated and validated, it can be used to make forecasts for 

future time series data. 

 

3.2. Time Series by DeepAR 

The first model capable of working natively on multiple time series is DeepAR [13], a recurrent 

autoregressive network developed by Amazon. DeepAR uses LSTM networks to create probabilistic 

outputs. DeepAR leverages LSTMs to parameterize a Gaussian likelihood function, that is, to estimate the 

parameters ϑ = (µ, σ) (mean and standard deviation) of the Gaussian function. 

 

 
Figure 2. Inference during the training phase 

 

a) First, the LSTM cell takes the input covariates xi,t from the current time step t and the 

target variable zi,t-1 from the previous time step t-1. The LSTM also receives the hidden 

state hi,t-1 from the previous time step. 

b) Next, the LSTM cell outputs its hidden state hi,t, which is passed to the next step. 

c) The values µ and σ are indirectly calculated from hi,t and become the parameters of a 

Gaussian likelihood function, denoted as ϑ = (µ, c_t). 

d) This concludes training step t. The current target value zi and the hidden state hi,t are 

passed to the next time step, and the training process continues. 

 

In statistics, the parameters µ and σ are typically estimated using Maximum Likelihood Estimation 

(MLE) formulas, which are derived by differentiating the likelihood function. Instead, LSTM and 

the two dense layers derive these parameters based on the model input. The process of estimating 

µ and σ is straightforward: 

a) First, the LSTM computes its hidden state hi,t. 

b) Then, hi,t passes through a dense layer W to calculate the mean µ. 

c) Similarly, the same hi,t passes through a second dense layer W to calculate the standard 

deviation σ. 

d) Now we have µ and σ. The model creates a Gaussian distribution with these parameters 

and takes a sample. Then, the model checks how close this sample is to the actual 

observation zi,t. 

e) The LSTM weights and the two dense layers W and W are trained during backpropagation 
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3.3. Le perceptron multicouche  

La structure du perceptron multicouche utilisé est présentée par la figure 4 et est composée de neurones 

interconnectés en trois couches successives. 

 

Figure 4. The structure of the multilayer perceptron 

The first layer is composed of 'pass-through' neurons that perform no computation but simply distribute their 

inputs to all neurons in the next layer, called the hidden layer. The neurons in the hidden layer receive the 

𝑛0 inputs {𝑥1
0, 000, 𝑥𝑛

0} from the input layer with associated weights {𝑤𝑖1
0, 000,𝑤𝑖𝑛0

0 }. This neuron starts by 

computing the weighted sum of its 𝑛0  inputs: 

𝑍𝑖
1 = ∑ 𝑤𝑖ℎ

1 ∗ 𝑥ℎ
0 + 𝑏𝑖

𝑙𝑛0
ℎ=1                                                      (1) 

Where 𝑏𝑖
1  is a bias (or threshold g(l)) 

The output of the hidden neuron is obtained by transforming the sum (1) through the activation function g: 

𝑥𝑖
1 = 𝑔(𝑧𝑖

1).                                                                                   (2) 

Although many activation functions have been proposed, the function g(.) is typically the hyperbolic 

tangent: 

𝑔(𝑥) =
2

1+𝑒−2𝑥
− 1 =  

1−𝑒−2𝑥

1+𝑒−2𝑥
                                                        (3)  

The neuron in the last layer (or output layer) uses a linear activation function and therefore performs a 

simple weighting of its inputs: 

 

 

Figure 3. Process of estimating µ, σ 
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𝑍 =  ∑𝑤𝑖
2

𝑛𝑙

𝑖=𝑖 

∗ 𝑥𝑖
1 + 𝑏                                                                            (4) 

Where 𝑤𝑖
2 are the weights connecting the outputs of hidden neurons to the output neuron, and b is the bias of 

the output neuron. 

 

3.4 Model Performance Evaluation 

This step involves evaluating the models by comparing the difference between estimated values and actual 

values. The model ultimately chosen is the one that minimizes one of the criteria using T observations 

 Mean Absolute Error :  𝑀𝐴𝐸 =
1

𝑇
∑ |𝜖𝑡|
𝑇
𝑡=1 . 

 Mean Squared Error : 𝑀𝑆𝐸 =
1

𝑇
∑ 𝜖𝑡

2𝑇
𝑡=1  

 Root Mean Square Error : 𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ 𝜖𝑡

2𝑇
𝑡=1  

 Mean Absolute Percent Error : 𝑀𝐴𝑃𝐸 =
100

𝑇
∑ |

𝜖𝑡

𝑋𝑡
|𝑇

𝑡=1  

 Nash-Sutcliffe efficiency :  𝑁𝑆𝐸 = 1 −
∑ (𝑌𝑖

𝑜𝑏𝑠−(𝑌𝑖
𝑠𝑖𝑚)

2
𝑁
𝑖

∑ (𝑌𝑖
𝑜𝑏𝑠−(𝑌𝑖

𝑚𝑒𝑎𝑛 𝑜𝑏𝑠)
2𝑁

𝑖

 

 

 Determination coefficient:  𝑅2 =
𝐶𝑜𝑣2(𝑌𝑖

𝑠𝑖𝑚,𝑌𝑖
𝑜𝑏𝑠)

𝑉(𝑌𝑠𝑖𝑚)∗𝑉(𝑌𝑜𝑏𝑠)
 

The lower the value of these criteria, the closer the estimated model is to the observations 

 

4. CONTRIBUTION  

4.1. Representation of the Studied Supply Chain 

The optimization model is inspired by those presented by Cordeau (2014)[14] in the "VEGESUPPLY" 

project. The model leverages collaborative logistics, a powerful tool, to reduce costs and enhance 

competitiveness 

 

Figure IV.  1 Distribution network (Olivier Péton and Cordeau 2014) 

 

 

Distribution center 

Intermediate warehouse 

: Distribution depot 
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The figure illustrates the role of ICCs (intermediate warehouses). Central depots ship their logistics units to 

one of the nearest ICCs. Subsequently, customer orders are consolidated in the ICCs and distributed via the 

nearest distribution routes. The mileage gain is made possible by the presence of multiple ICCs, which 

avoids unwanted detours. Furthermore, to ensure local services, the ICCs also manage orders for customers 

residing nearby. 

The capacities of the warehouses are limited, as are the number of vehicles used: 

 Each customer can be delivered by at most one vehicle in a period. 

 A vehicle can make at most one tour per period. 

 The demand of each customer in a period is deterministic and can be satisfied either from stock or 

by delivery in the same period. 

 Costs to be considered include warehouse storage fees, fixed costs associated with vehicle use, and 

fixed costs associated with each distribution warehouse. 

The objective is to determine, for each period, the quantities to be delivered to each warehouse, whether it is 

an intermediate warehouse or a distribution warehouse, as well as the transportation services provided, in 

order to minimize the total cost. 

 

4.2 Modeling the Supply Chain Process 

The current instant demand at warehouse i is modeled by 

𝐷𝑖,𝑡 = 𝑢𝑖 + 𝜖𝑖,𝑡 

Where 𝐷𝑖,𝑡  is the demand at instant t for the item with 1 ≤ i ≤ N, and a represents the trend. For the entire 

distribution supply chain, the equation becomes: 

𝐷𝑡 =∑𝑢𝑗𝑡
𝑗 + 𝜖𝑡

𝑘

𝑗=0

 

Where: k is the number of distribution warehouses, 𝑢𝑖, 𝜎
2 are the mean and standard deviation of the 

demand for product 𝑖, 𝜖𝑖,𝑡 is a series of independently and identically distributed random values. 

Selling is modeled by 𝑉𝑖,𝑡 = min (𝐷𝑖,𝑡  , 𝑆𝑖,𝑡)  where 𝑉𝑖,𝑡  represents the sales made at time t, and 𝑆𝑖,𝑡  is the 

available stock of product i at warehouse j. 

First, we present the initial solutions determined in the studied system. Stock models for distribution depots 

and the distribution center are then established to determine the best stock parameters for all sites and 

minimize the total cost at the system level. 

To address the total cost minimization for the distribution depots, we adopt the heuristic proposed by 

Ehrhardt and Mosier (1984)[99], which involves determining 𝑠𝑖
0 𝑎𝑛𝑑 𝑆𝑖

0  Model (R,s,S) based on a 

backorder cost. 

Let G_k and z_k be such that: 
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𝐺𝑘 = 1.3(𝑢𝑘)
0.494 (

𝑎𝑘
ℎ𝑘
)
0.506

(1 +
𝜎𝑘,𝑅𝑘
2

𝑢𝑘
2 )

0.116

 

Et 𝑧𝑘 = √
𝐺𝑘

ℎ𝑘

𝜎𝑘,𝑅𝑘𝑏𝑘 
 

So, for any vertex k, k 𝜖  {1,…𝐾} : 

𝑠𝑘 = 0.973 𝑢𝑘,𝑅𝑘 + 𝜎𝑘,𝑅𝑘 (
0.183

𝑧𝑘
+ 1.063 − 2.192𝑧𝑘) 

If   
𝐺𝑘

𝑢𝑘
 > 1.5 alors = 

  𝑠𝑘
0 = 𝐺𝑘   𝑒𝑡 𝑆𝑘

0 = 𝑠𝑘
0 + 𝐺𝑘 

Else  

𝑆0 = 𝑢𝑘,𝐿+1 + 𝑘𝜎𝑘,𝐿+1 

𝑠𝑘
0 = 𝑚𝑖𝑛{𝐺𝑘 , 𝑆0} 

𝑆𝑘
0 = 𝑚𝑖𝑛{𝑠𝑘 + 𝐺𝑘 , 𝑆0} 

  

With     𝑢𝑘,𝑅𝑘 = (𝑅𝑘 + 1)ℎ𝑘   𝑒𝑡 σ𝑘,𝑅𝑘
2 = (𝑅𝑘 + 1)𝜎𝑘

2 

For the distribution center, we adopt the concept of the echelon stock proposed by Clark and Scarf (1960). 

Therefore, the initial replenishment level in the distribution center is equal to the echelon stock of the entire 

system. To ensure that k is satisfactory, the initial stock position of the distribution center, which is limited 

to customer demand only during 𝐿𝐶𝐷 + 𝑅,  is : 

𝑆0 = 𝑁𝑢𝑖(𝐿𝐶𝐷 + 𝑅) +∑𝑆𝑖
0

𝑁

𝑖=1

 

                    During each period t, we have the following sequence of events: 

a) Arrival of deliveries from suppliers: 

𝑆𝑡
𝑏 = 𝑆𝑡−1

𝑏 + 𝑄𝑡−𝐿𝐶𝐷−1 

 

b) Receipt of orders from distribution centers: 

𝐷𝑡 = ∑𝑌𝑖,𝑡

𝑁

𝑖=1

 

 

c) Stock reservation and order placement with the supplier: 

𝑃𝑡
𝑎 = 𝑃𝑡−1

𝑏 −∑𝑄𝐿𝑖,𝑡

𝑁

𝑖=1

𝑒𝑡  𝑆𝑡
𝑎 = 𝑆𝑡

𝑏 − ∑𝑄𝐿𝑖,𝑡

𝑁

𝑖=1

 

 

d) Stock situation is updated as follows: 

𝑆𝑡+1
𝑏 = 𝑆𝑡

𝑎   ,  t=1…T 

𝑃𝑡+1
𝑏 = 𝑃𝑡

𝑎   , 𝑡 = 1. . 𝑇 
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e) Redeployment of maximum stock quantities: 

The available quantity for redeployment, 𝑄𝑑𝑒𝑝 to avoid overstock in a distribution depot is determined in a 

way that ensures the remaining stock guarantees a minimum service level 𝜃𝑘
𝑚𝑖𝑛   min over the same duration 

𝐿𝑘: 

𝑄𝑟𝑒𝑑 = 𝑉𝑘𝐿(𝑍𝛼𝑚𝑎𝑥 − 𝑍𝛼𝑚𝑖𝑛) 

The total management cost per period is given by the formula below: 

Γ =  𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒𝑟 ∑(∑𝑅. 𝑣𝑘𝑡 +∑∑𝑐𝑗
𝐶𝑥𝑗𝑘𝑡

𝐾

𝑘=1

𝐽

𝑗=1

𝐾

𝑘=1

+∑ℎ𝑗
𝐶𝐼𝑗𝑡
𝐶

𝐽

𝑗=1

)

𝑇

𝑖=1

 

And the total stock of the product in the supply chain in this case becomes :  

EP =  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑(ℎ𝑃𝐸𝑡
𝑃 +∑𝑅. 𝑣𝑘𝑡 +∑∑𝑐𝑗

𝐶𝑥𝑗𝑘𝑡

𝐾

𝑘=1

𝐽

𝑗=1

𝐾

𝑘=1

+∑(ℎ𝑗
𝐶 − ℎ𝑃)𝐼𝑗𝑡

𝐶

𝐽

𝑗=1

)

𝑇

𝑖=1

 

Under the following constraints: 

∑𝑞𝑗𝑘𝑡
𝐶  ≤ 𝑊. 𝑣𝑘𝑡     ∀𝑘 ∈ 𝐾 , ∀ 𝑡 ∈ 𝑇

𝐽

𝑗=1

 

𝑞𝑗𝑘𝑡
𝐶  ≤ 𝑊. 𝑥𝑗𝑘𝑡       ∀𝑗 ∈ 𝐾      ∀𝑡 ∈∈ 𝑇 

∑𝑥𝑗𝑘𝑡  ≤ 1        ∀𝑗 ∈ 𝐽 ,   ∀𝑡 ∈∈ 𝑇  

𝐾

𝑘=1

 

 

4.2  Resolution Methodogy 

 

We will present a methodology to address the challenge of modeling and optimizing the 

complex supply chain using artificial intelligence, with the aim of reducing overall logistics 

costs and optimizing inventory levels while ensuring optimal service to our customers. 

This methodology involves implementing a multi-model representation for forecasting 

customer orders, as well as a model for the supply chain. We will detail each model 

structure. 

For forecasting customer orders, we will use two different model structures: 

 The ARIMA model, which is a statistically-based technique evaluated in various 

applications, demonstrating its proven performance. 

 Amazon's DeepAR model, which is a deep learning technique that enables the 

development of a global forecasting model based on a recurrent autoregressive 

neural network. 
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Figure 5. Methodology for Selecting the Best Customer Order Forecasting Model 

From the historical order database, the first phase involves data preprocessing, followed by the separation of 

available data into a training set and a test set. We automatically calculate the ARIMA model parameters p, 

d, and q, then compare the results with those displayed in the ACF and PACF diagrams. 

For the ARIMA model, the "p" and "q" parameters and the differencing term "d," we train the ARIMA 

structure by varying the parameters within their ranges using the Step-Wise algorithm presented in 

(Hyndman & Khandakar, 2008) and then identify the model with the lowest AIC (Akaike Information 

Criterion). 

Based on these input data, the DeepAR algorithm forms a model that learns an approximation of these 

processes and uses it to predict how customer orders evolve. First, DeepAR trains the model by random 

sampling. Each training example consists of two adjacent windows: a context window and a prediction 

window. The size of each of these windows is fixed and imposed by the context_length parameter, which 

controls how far back the network can look into the past, and the prediction_length parameter, which 

controls how far into the future predictions can extend. 

Then, for the second step, the best structures of each model type are evaluated to choose the one that 

performs the best. The testing step involves competing these trained models on the test data to select the best 

structure (Winmodel) by minimizing the test error calculated for each series (eteste) according to the 

following equation. 

𝑊𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘(𝜀𝑡𝑒𝑠𝑡 𝑘) 

Where k is the number of tests conducted, and eteste is the error measure used for each model. The 

competition criterion used is the root mean square error (RMSE). 

 

Once the best model between ARIMA and DeepAR is selected, for each product, we retrain this model on 

all the data (including the data used in the test set during the model competition) to refine its 

hyperparameters for better product modeling. Finally, forecasts are calculated and sent to the optimization 

model according to the requested horizon (a 12-month period). To make predictions at different horizons, we 

used a recursive prediction strategy. 

Figure 5 illustrates our approach to model selection for each product. This model selection step is the most 

crucial in the prediction process. 
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4.2 Optimization Structure and Algorithm 

For the supply chain optimization model, we use a Multilayer Perceptron (MLP) neural network with the 

Newton SQP method. Here is the algorithm: 

 

SQP Algorithm with Equality and Inequality Constraints  

Data : 𝑓 ∶ 𝑅𝑛 → 𝑅, 𝑔: 𝑅𝑛 → 𝑅𝑞 , ℎ ∶ 𝑅𝑛 → 𝑅𝑝 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒𝑠, 𝑥0 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑖𝑛𝑡, 

𝜆0  ∈ 𝑅+
𝑞
 𝑒𝑡 𝑢0  ∈ 𝑅

𝑝 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠, 𝜀 > 0 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. 
Output: an approximation x* of the solution. 

1. 𝑘 ≔ 0; 
2.𝑤ℎ𝑖𝑙𝑒 ∥ ∇L(xk; 𝜆𝑘 ∥ >  𝜀,  
(𝑎)𝑅é𝑠𝑜𝑢𝑑𝑟𝑒 𝑙𝑒 𝑠𝑜𝑢𝑠 − 𝑝𝑟𝑜𝑏𝑙è𝑚𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑞𝑢𝑒 ∶ 
 

(𝑄𝑃𝑘)   

{
 
 

 
 min

d∈Rn
∇𝑓(𝑥𝑘)

𝑇𝑑 +
1

2
𝑑𝑇𝐻𝑘𝑑

𝑠. 𝑡  𝑔𝑗(𝑥
𝑘) + ∇𝑔𝑗(𝑥

𝑘)
𝑇
𝑑 = 0 , 𝑖 = 1,… , 𝑞,

ℎ𝑖(𝑥
𝑘) + ∇ℎ𝑖(𝑥

𝑘)
𝑇
𝑑 = 0 ,   𝑖 = 1,… , 𝑝.

 

 

𝑎𝑛𝑑 𝑜𝑏𝑡𝑎𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑𝑘𝑎𝑛𝑑 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑠 𝜆
′𝑎𝑛𝑑 𝑢′ 

𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
(𝑏) 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘   ;   𝜆

𝑘+1 = 𝜆′ ; 𝑢𝑘+1 = 𝑢′  ; 𝑘 = 𝑘 + 1 

3. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑥𝑘 
 

  

One of the strategies that can be used to avoid overfitting is regularization, which employs the weight decay 

technique. This involves replacing the error with: 

𝐸𝑟𝑟𝑒𝑢𝑟(𝑦, 𝑓(𝑥)) +
𝜆

2
∑ 𝑤𝑗

2

𝑗
 

Using the forecasted data of customer orders and instance parameters, we will create a training and 

validation database to determine the optimal value. Our initial database will be divided into three parts. The 

first part of the data will be used for model training, by product. The second part will be reserved for training 

the combination method with the Newton model. Finally, the last part will be used to evaluate the prediction 

results in order to determine the optimal value 

 

Figure 6. Structure and optimization algorithm 
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5. CONCLUSION 

In this article, we studied a multi-site, multi-echelon supply chain consisting of a distribution center, 

intermediate warehouses, and distribution depots. The primary contribution of this study lies in selecting a 

high-performing model between ARIMA and DeepAR for predicting customer orders, thus creating a hybrid 

optimization model that combines the multilayer perceptron neural network and the Newton optimization 

model. 

The use of the multilayer perceptron (MLP) neural network allowed us to consider the complexity of 

interactions between cost variables, transportation, stocks, and decision variables. This led to more precise 

and effective recommendations for managing our supply chain. 

Incorporating predictive order data introduced an element of predictability, offering the opportunity to better 

anticipate demand fluctuations and adjust our decisions accordingly. At the same time, other cost-related 

variables were integrated to minimize expenses while maintaining an optimal level of service. 

This optimization approach not only reduced operational costs but also optimized inventory levels, reduced 

transportation times, and increased customer satisfaction through improved product availability. 

Furthermore, it facilitated a more efficient and cost-effective supply chain, thereby enhancing our 

competitiveness in the market. 
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