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ABSTRACT 

This article uses a nonlinear extension of Nomoto model for ship modeling. Our goal is to synthesize a robust control law 

for the autopiloting of a cargo ship. A backstepping technique with approximation of the nonlinear function by artificial 

neural networks is used. 
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1. Introduction 

Nowadays, the need of an automatic control or autopiloting is useful. So, we will contribute to the synthesis of a robust 

control law for the autopiloting of a cargo ship in maneuver. A nonlinear extension of the first-order Nomoto model is 

chosen for its simplicity and fidelity to the actual behavior of the cargo ship. Many simulations of a course-keeping and 

turning maneuver of the cargo ship will be presented in this article. 

2. Cargo ship 

A cargo ship or freighter [1] is a merchant ship whose role is to transport goods in various forms using the seaway.  

Cargo ships can be classified according to the type of goods they carry, and how they are transported. The main 

distinction is made between : 

 a « dry » cargo 

 a « liquid » cargo 

 
Figure 1 : Degrees of freedom of a ship 

Like all conventional ships, cargo ships or freighters have 6 degrees of freedom which are: surge, sway, heave, roll, 

pitch and yaw. The 6 degrees of freedom of a ship are expressed in Figure 1. 

Remark 1 : 

In this article, we will mainly focus on autopilot, that is, controlling the yaw angle. 
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3. Autopilot model of Nomoto [2] 

3.1.  Second order Nomoto model 

The linear autopilot model with constant speed 𝑢0  is defined by: 

𝑀�̇� + 𝑁(𝑢0)𝜈 = 𝑏𝛿 (1) 

with 𝜈 = [𝑣, 𝑟]𝑇 is the state vector. 

𝛿 is the rudder angle. 

𝑏 = [
−𝑌𝛿
−𝑁𝛿

] is a hydrodynamic coefficient matrix. 

𝑀 = [
𝑚 − 𝑌�̇� 𝑚𝑥𝑔 − 𝑌�̇�

𝑚𝑥𝑔 − 𝑁�̇� 𝐼𝑧 − 𝑁�̇�
] is the inertia matrix. 

𝑁(𝑢0) = [
−𝑌𝑣 𝑚𝑢0 − 𝑌𝑟
−𝑁𝑣 𝑚𝑥𝑔𝑢0 − 𝑁𝑟

] is sum of the Coriolis centripetal term and linear damping. 

The yaw rate 𝑟 is chosen as output such that: 

�̇� = 𝑟 (2) 

𝑟 = 𝑐𝑇𝜈, 𝑐𝑇 = [0,1] (3) 

The Laplace transform of equation (1) gives: 

𝑟

𝛿
(𝑠) =

𝐾(1 + 𝑇3𝑠)

(1 + 𝑇1𝑠)(1 + 𝑇2𝑠)
 (4) 

The time domain representation of the second order model gives: 

𝑇1𝑇2𝜓
(3) + (𝑇1 + 𝑇2)�̈� + �̇� = 𝐾(𝛿 + 𝑇3�̇�) (5) 

By combining equation (2) and (5), we have: 

𝑇1𝑇2�̈� + (𝑇1 + 𝑇2)�̇� + 𝑟 = 𝐾(𝛿 + 𝑇3�̇�)  (6) 

3.2.  First order Nomoto model 

The first order Nomoto model is obtained by calculating the equivalent time constant by: 

𝑇 = 𝑇1 + 𝑇2 − 𝑇3 (7) 

Such as 

𝑟

𝛿
(𝑠) =

𝐾

(1 + 𝑇𝑠)
 (8) 

The time domain representation of the first order Nomoto model gives: 

𝑇�̈� + �̇� = 𝐾𝛿 (9) 

By combining equation (2) and (9), we have: 

𝑇�̇� + 𝑟 = 𝐾𝛿 (10) 
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Figure 2 : Frequency response of a cargo ship 

The frequency response is shown in Figure 2. It shows us that Nomoto first-order autopilot model of a cargo ship is quite 

accurate at very low frequencies. The difference between the first order and second order model is around the frequency 

0.1 rad/s. This is due to the cancellation of the sway dynamics. The first-order model is therefore widely used for 

modeling a maneuvering cargo ship working at very low frequencies. 

3.3. Nonlinear extension of the Nomoto model 

The linear Nomoto model can be extended to include nonlinear effects by adding a static nonlinearity describing the 

maneuver characteristics. 

3.3.1. Nonlinear extension of the first order Nomoto model 

In [3], the following first order model is proposed : 

𝑇�̇� + 𝐻𝑛(𝑟) = 𝐾𝛿 (11) 

with 

𝐻𝑛(𝑟) = 𝑛3𝑟
3 + 𝑛2𝑟

2 + 𝑛1𝑟 + 𝑛0 (12) 

The equivalent linear model defined by equation (10) is obtained for 𝐻𝑛(𝑟) = 𝑟. 

3.3.2. Nonlinear extension of the second order Nomoto model 

In [4], a nonlinear extension of the second order model is proposed : 

𝑇1𝑇2�̈� + (𝑇1 + 𝑇2)�̇� + 𝐻𝐵(𝑟) = 𝐾(𝛿 + 𝑇3�̇�) (13) 

with 

𝐻𝐵(𝑟) = 𝑏3𝑟
3 + 𝑏2𝑟

2 + 𝑏1𝑟 + 𝑏0 (14) 

The equivalent linear model defined by equation (6) is obtained for 𝐻𝐵(𝑟) = 𝑟. 

4. Autopilot synthesis [5][6][7] 

The autopiloting block diagram is given in Figure 3 below: 
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Figure 3 : Autopiloting of a cargo ship 

4.1. Nominal backstepping control 

Consider the following nonlinear first order nominal model: 

�̇� = 𝑟 (15) 

𝑇�̇� + 𝐻𝑁(𝑟) = 𝐾𝛿 (16) 

In the strict feedback form, we have: 

�̇� = 𝑟 (17) 

�̇� =
1

𝑇
[𝐾𝛿 − 𝐻𝑁(𝑟)] (18) 

Autopiloting consists of following the desired yaw angle 𝜓𝑑 by the yaw angle 𝜓. 

Step 1 : We define the error variable 𝑒1 = 𝜓 − 𝜓𝑑. Its derivative gives: 

𝑒1̇ = �̇� − �̇�𝑑 = 𝑟 − �̇�𝑑 (19) 

Consider the following Lyapunov control function: 

𝑉1 =
1

2
𝑒1
2 (20) 

Its derivative then gives: 

�̇�1 = 𝑒1�̇�1 (21) 

So 

�̇�1 = 𝑒1(𝑟 − �̇�𝑑) (22) 

To ensure the convergence of 𝑒1, the derivative of the Lyapunov control function must be defined negative therefore, 

𝑟 − �̇�𝑑 = −𝑘1𝑒1 (23) 

So, 

𝑟𝑑 = −𝑘1𝑒1 + �̇�𝑑 (24) 

And 

�̇�1 = −𝑘1𝑒1
2 (25) 

Step 2 : We define the error variable 𝑒2 = 𝑟 − 𝑟𝑑. Its derivative gives: 

�̇�2 = �̇� − 𝑟�̇� = −
𝐻𝑁(𝑟)

𝑇
+
𝐾

𝑇
𝛿 − 𝑟�̇�  (26) 

The nonlinear function −
𝐻𝑁(𝑟)

𝑇
 composing the model is sometimes difficult to implement in practice. With its 

approximation by an artificial neural network 𝜃𝑇𝜉(𝑟), equation (26) gives: 

�̇�2 = 𝜃𝑇𝜉(𝑟) +
𝐾

𝑇
𝛿 − �̇�𝑑 (27) 

Consider the following Lyapunov control function: 
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𝑉2 = 𝑉1 +
1

2
𝑒2
2 (28) 

Its derivative gives: 

�̇�2 = −𝑘1𝑒1
2 + 𝑒2�̇�2 (29) 

So 

�̇�2 = −𝑘1𝑒1
2 + 𝑒2(𝜃

𝑇𝜉(𝑟) +
𝐾

𝑇
𝛿 − �̇�𝑑) (30) 

To ensure the convergence of 𝑒2, the derivative of the Lyapunov control function must be defined negative therefore, 

𝜃𝑇𝜉(𝑟) +
𝐾

𝑇
𝛿 − �̇�𝑑 = −𝑘2𝑒2 (31) 

So, the nominal rudder angle control law is given by : 

𝛿 =
𝑇

𝐾
[−𝜃𝑇𝜉(𝑟) + �̇�𝑑 − 𝑘2𝑒2] (32) 

4.2.  « Efficient » nominal backstepping control   

To increase the performance of the system [8], we will use the term 𝑡𝑎𝑛ℎ() defined by the figure 4. 

Step 1 : Equation (23) then becomes : 

𝑟 − �̇�𝑑 = −𝑘1𝑒1 − 𝛽1tanh(𝛼1𝑒1) (33) 

with 𝛽1 > 0 et 𝛼1 > 0 

 

So, 

𝑟𝑑 = −𝑘1𝑒1 + �̇�𝑑 − 𝛽1tanh(𝛼1𝑒1) (34) 

And 

�̇�1 = −𝑘1𝑒1
2 − 𝛽1𝑒1tanh(𝛼1𝑒1) < 0 (35) 

 

Figure 4 : Hyperbolic tangent function 

Etape 2 : Equation (31) then becomes : 

𝜃𝑇𝜉(𝑟) +
𝐾

𝑇
𝛿 − �̇�𝑑 = −𝑘2𝑒2 − 𝛽2tanh(𝛼2𝑒2)  (36) 

So, the « efficient » nominal rudder angle control law is given by: 
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𝛿 = 𝛼1 =
𝑇

𝐾
[−𝜃𝑇𝜉(𝑟) + �̇�𝑑 − 𝑘2𝑒2

− 𝛽2tanh(𝛼2𝑒2)] 
(37) 

Remark 2 : 

The « efficient » backstepping control allows us to : 

 increase the performance of the nominal system 

 guarantee global asymptotic stability in the case of a system with a bounded or constant external disturbance 

4.3.  Robust backstepping control 

Consider the following first order nonlinear perturbed Nomoto model : 

�̇� = 𝑟 (38) 

𝑇�̇� + 𝐻𝑁(𝑟) = 𝐾𝛿 + 𝑤Δ (39) 

with 𝑤𝛥 is the external disturbance representing the wind, the wave and the sea current where 

 𝑤 is a known nonlinear function 

 𝛥 is an uncertain nonlinear term but bounded by ∆0 

In the strict feedback form, we have: 

�̇� = 𝑟 (40) 

�̇� =
1

𝑇
[𝐾𝛿 + 𝑤Δ − 𝐻𝑁(𝑟)] (41) 

 

 

  

with 𝐻𝑁(𝑟)is a known nonlinear function. 

Let 𝜓𝑑 be the desired output of the system. 

Step 1 : We define the error variable 𝑒1 = 𝜓 − 𝜓𝑑. Its derivative gives: 

𝑒1̇ = �̇� − �̇�𝑑 = 𝑟 − �̇�𝑑 (42) 

Consider the following Lyapunov control function: 

𝑉1 =
1

2
𝑒1
2 (43) 

Its derivative then gives: 

�̇�1 = 𝑒1�̇�1 (44) 

So 

�̇�1 = 𝑒1(𝑟 − �̇�𝑑) (45) 

To ensure the convergence of 𝑒1, the derivative of the Lyapunov control function must be defined negative therefore, 

𝑟 − �̇�𝑑 = −𝑘1𝑒1 − 𝛽1tanh(𝛼1𝑒1) (46) 

with 𝛽1 > 0 et 𝛼1 > 0 

So, 

𝑟𝑑 = −𝑘1𝑒1 − 𝛽1tanh(𝛼1𝑒1) + �̇�𝑑 (47) 

And 

�̇�1 = −𝑘1𝑒1
2 − 𝛽1𝑒1tanh(𝛼1𝑒1) (48) 

Step 2 : We define the error variable 𝑒2 = 𝑟 − 𝑟𝑑. Its derivative gives: 

�̇�2 = �̇� − 𝑟�̇� = −
𝐻𝑁(𝑟)

𝑇
+
𝐾

𝑇
𝛿 +

𝑤(𝑡, 𝜓, 𝑟)Δ

𝑇
− 𝑟�̇� 

(49) 

 

 



Vol-6 Issue-6 2020               IJARIIE-ISSN(O)-2395-4396 

12872 www.ijariie.com 69 

The nonlinear function −
𝐻𝑁(𝑟)

𝑇
 composing the model is sometimes difficult to implement in practice. With its 

approximation by an artificial neural network 𝜃𝑇𝜉(𝑟), equation (49) gives: 

�̇�2 = 𝜃𝑇𝜉(𝑟) +
𝐾

𝑇
𝛿 +

𝑤(𝑡, 𝜓, 𝑟)Δ

𝑇
− �̇�𝑑 (50) 

 

 

Consider the following Lyapunov control function: 

𝑉2 = 𝑉1 +
1

2
𝑒2
2 (51) 

Its derivative gives: 

�̇�2 = −𝑘1𝑒1
2 − 𝛽1𝑒1 tanh(𝛼1𝑒1) + 𝑒2�̇�2 (52) 

So 

�̇�2 = −𝑘1𝑒1
2 − 𝛽1𝑒1 tanh(𝛼1𝑒1) + 𝑒2(𝜃

𝑇𝜉(𝑟) +
𝐾

𝑇
𝛿 +

𝑤(𝑡,𝜓,𝑟)Δ

𝑇
− �̇�𝑑)  

(53) 

 

 

The method of nonlinear damping makes it possible to calculate the command which ensures bounded trajectories of (41), 

despite the presence of uncertainties, therefore: 

𝛿 = 𝛼1 + 𝜍 (54) 

So, equation (53) gives: 

�̇�2 = −𝑘1𝑒1
2 − 𝛽1𝑒1 tanh(𝛼1𝑒1) − 𝑘2𝑒2

2 −

𝛽2𝑒2 tanh(𝛼2𝑒2) + 𝑒2(
𝐾

𝑇
𝜍 +

𝑤(𝑡,𝜓,𝑟)Δ

𝑇
)  

(55) 

because the nominal command of the rudder angle is given by equation (37). 

With 

𝜍 = −𝑚1𝑒2𝑤
2 (56) 

where 𝑚1 > 0 is a design parameter. 

So, equation (55) then becomes : 

�̇�2 = −𝑘1𝑒1
2 − 𝛽1𝑒1 tanh(𝛼1𝑒1) − 𝑘2𝑒2

2 −

𝛽2𝑒2 tanh(𝛼2𝑒2) −
𝐾𝑚1𝑒2

2𝑤2

𝑇
+

𝑒2𝑤Δ

𝑇
  

(57) 

 

where 

−
𝐾𝑚1𝑒2

2𝑤2

𝑇
+

𝑤Δ𝑒2

𝑇
= −

𝐾𝑚1

𝑇
[𝑒2𝑤 −

Δ

2𝐾𝑚1
]
2

+
Δ2

4𝐾𝑇𝑚1
  

Since∆ is bounded by ∆0 and 𝐾𝑇 > 1, then 

�̇�2 ≤ −𝑘1𝑒1
2 − 𝛽1𝑒1 tanh(𝛼1𝑒1) − 𝑘2𝑒2

2 −

𝛽2𝑒2 tanh(𝛼2𝑒2) +
∆0
2

4𝑚1
  

(58) 

This result implies that �̇�2 is negative outside a certain plane, and that 𝑒1 and 𝑒2are bounded (the bound depends on ∆0 

and 𝑚1), despite the presence of uncertainties. 

5. Simulation 

Assumption 1: 

 The known nonlinear term 𝑤 composing the external disturbance is a ramp function with slope equal to 2 

 The uncertain nonlinear term is bounded by ∆0= 4 so |∆| < 4 

 The operating speed of the cargo ship is constant 
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5.1. Course-keeping maneuver 

5.1.1. Nominal backstepping control 

Figure 5 shows the result in course-keeping maneuver simulation of the nominal nonlinear autopiloting cargo ship with 

the rudder control law defined by equation (32). The nominal nonlinear system has great accuracy because in steady state 

the difference between the reference 𝜓𝑑 and the output 𝜓 is zero as shown in figure 6. The system is also very fast 

because the rise time, which is defined as the time taken for the system to reach 90% of the final value, is approximately 

0.2s. However, it shows a very slight overshoot at the reference jump point. 

 

Figure 5 : Nominal system response in course-keeping 

 

Figure 6 : Error signal of the nominal system in course-keeping 

The rudder angle δ is given in figure 7. In steady state and before the jump at 𝑡 = 3𝑠, we see that the rudder angle has a 

constant value of 633.6𝑑𝑒𝑔. In addition, an alternative pulse can be seen at the reference jump point. This is due to the 

sudden variation of the reference which has an infinite tangent at time 𝑡 = 3𝑠. 
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Figure 7 : Rudder angle𝛿 

5.1.2.  « Efficient » nominal backstepping control 

Figure 8 shows the result in course-keeping maneuver simulation of the « efficient » nominal nonlinear autopiloting 

cargo ship with the rudder control law defined by equation (37). The « efficient » nominal nonlinear system has great 

accuracy because in steady state the difference between the reference 𝜓𝑑 and the output 𝜓 is zero as shown in figure 9. 

The system is also very fast because the rise time, which is defined as the time taken for the system to reach 90% of the 

final value, is approximately 0.1s.  

 

Figure 8 : Efficient nominal system response in course-keeping 

 

Figure 9 : Efficient nominal error signal in course-keeping 
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Figure 10 : Rudder angle𝛿 

The rudder angle δ is given in figure 10. In steady state and before the jump at t = 3s, we see that the rudder angle has a 

constant value of 633.6𝑑𝑒𝑔. In addition, an alternative pulse can be seen at the reference jump point. This is due to the 

sudden variation of the reference which has an infinite tangent at time 𝑡 = 3𝑠.  

Remark 3: 

We notice an increase in the performance of the nominal system in course-keeping with the use of the performance term 

𝑡𝑎𝑛ℎ() because: 

 there is disappearance of the overshoot 

 the rise time has gone from 0.2𝑠 to 0.1𝑠 

5.1.3. Robust backstepping control 

Figure 11 shows the result in course-keeping maneuver simulation of the robust nonlinear autopiloting cargo ship with 

the rudder control law defined by equation (54). The robust nonlinear system has great accuracy because in steady state 

the difference between the reference 𝜓𝑑 and the output 𝜓 is zero as shown in figure 12. The system is also very fast 

because the rise time, which is defined as the time taken for the system to reach 90% of the final value, is approximately 

0.1𝑠.  

 

 

Figure 11 : Robust system response in course-keeping 
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Figure 12 : Error signal of the robust system  in course-keeping 

 

Figure 13 : Rudder angle 𝛿for 𝑡 ∈ [0,10] 

 

Figure 14 : Rudder angle 𝛿 pour 𝑡 ∈ [0,3] 
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Figure 15 : Rudder angle 𝛿 pour 𝑡 ∈ [3,10] 

The rudder angle 𝛿 is given by figures 13, 14 and 15. At the jump point 𝑡 = 3𝑠, the rudder angle presents an alternative 

pulse as shown in figure 13. This is due to the sudden variation of the reference which has an infinite tangent at time 

𝑡 = 3𝑠. Before the jump, the rudder angle is given by figure 14. And after the jump, figure 15 shows us the evolution of 

the rudder angle. 

 

Remark 4: 

It can be seen that the external disturbance is rejected by the robust system in course-keeping. 

5.2. Turning maneuver 

5.2.1.  Nominal backstepping control 

 

Figure 16 : Nominal system response to a sine wave input 



Vol-6 Issue-6 2020               IJARIIE-ISSN(O)-2395-4396 

12872 www.ijariie.com 75 

 

Figure 17 : Error signal of the nominal system to a sine wave input 

Figure 16 shows the results in turning maneuver simulation of the nominal nonlinear autopiloting cargo ship with the 

rudder control law defined by equation (32). We can see that the output of the nominal system follows the sinusoidal 

reference very well. The difference between the reference 𝜓𝑑 and the yaw angle 𝜓 is sinusoidal with the same frequency 

as the reference and amplitude close to 0.51𝑑𝑒𝑔 as shown in figure 17. 

 

Figure 18 : Rudder angle 𝛿 

The rudder angle 𝛿 is given in figure 18. It is periodic with a maximum value close to 1.5 × 104𝑑𝑒𝑔 and the same 

frequency as the reference equal to 15𝑑𝑒𝑔/𝑠. 

5.2.2. « Efficient » nominal backstepping control 

Figure 19 shows the results in turning maneuver simulation of the « efficient » nominal nonlinear autopiloting cargo ship 

with the rudder control law defined by equation (37). We can see that the output of the « efficient » nominal system 

follows the sinusoidal reference very well. The difference between the reference 𝜓𝑑 and the yaw angle 𝜓 is sinusoidal 

with the same frequency as the reference and amplitude close to 0.15𝑑𝑒𝑔 as shown in figure 20. 
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Figure 19 : « Efficient » nominal system response to a sine wave input 

 

Figure 20 : Error signal of the « efficient » nominal system to a sine wave input 

The rudder angle 𝛿 is given in figure 21. It is periodic with a maximum value close to 1.9 × 104𝑑𝑒𝑔 and the same 

frequency as the reference equal to 15𝑑𝑒𝑔/𝑠. 

 

Figure 21 : Rudder angle 𝛿 

Remark 5 : 
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We notice an increase in the performance of the nominal system in turning maneuver because the difference between the 

reference 𝜓𝑑 and the yaw angle 𝜓 has gone from 0.51𝑑𝑒𝑔to 0.15𝑑𝑒𝑔. 

5.2.3. Robust backstepping control 

Figure 22 shows the results in turning maneuver simulation of the robust nonlinear autopiloting cargo ship with the 

rudder control law defined by equation (54). We can see that the output of the robust system follows the sinusoidal 

reference very well despite the uncertain environmental disturbance. The difference between the reference 𝜓𝑑 and the 

yaw angle 𝜓 is given in figure 23 with a maximum value of 0.18𝑑𝑒𝑔. 

The rudder angle 𝛿 is given in figure 24. It has several positive and negative pulses. 

 

 

Figure 22 : Robust system response to a sine wave input 

 

Figure 23 : Error signal of the robust system to a sine wave input 
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Figure 24 : Rudder angle𝛿 

6. Conclusion 

The synthesis of robust autopilot guarantees high performance in autopiloting of a cargo ship. It makes it possible to 

cancel the influence of external disturbance to the system and to ensure the cargo ship's maneuvering function while 

course-keeping and turning. 
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