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Abstract 
This project attempts a robust vehicle tracking technique considering all the problems that would otherwise disturb 

the vehicle tracking. Like the variation in the pose of the vehicle, change in illumination in the video, occlusion as of 

any material coming in between the line of focus and the camera. There were various methods that were proposed in 

the literature before but sparse representation has been a more superior method. In this paper we build up an 

algorithm to optimize the weight updation involved in multi-kernel fusion on visual tracking system. This makes this 

algorithm to be adaptive and optimized. Particle Swarm Optimization (PSO) algorithm is introduced in order 

populate the weight value and update it in every iteration in order to attain the objective function which will provide 

us the sparsest realization of the feature from the frame. The previous work had put light on the multi-kernel fusion 

alone but we improve that to be a multi-objective optimization using Particle Swarm Optimization algorithm. The 

thought generated must be tested with the software tools like Mat lab to validate the efficiency. 

Index Terms- Sparse representation, Kernel sparse representation, Particle swarm optimization, Multifeature 

fusion, Particle filter framework. 

 

I.INTRODUCTION 

Visual tracking is an essential task within the field of computer vision. The abundance of high-end computers, 

the existence of high quality video cameras, and the ever-increasing need for automated video analysis have 

generated a great deal of interest in visual tracking algorithms. Normally , the use of visual tracking is pertinent in 

the tasks of movement-based recognition, surveillance, video indexing, human–computer interaction and vehicle 

navigation, etc.For a visual tracking to be helpful in real-world scenarios, it must be planned to handle and overcome 

cases where the target‟s appearance changes from one frame to another. Even though much improvement has been 

made in recent years, it is still a tricky problem to develop a robust algorithm for complex and dynamic scenes due 

to large appearance change caused by varying illumination, camera movement, occlusions, background clutter, pose 

variation and shape deformation . 

Recently, sparse representation has been effectively applied to visual tracking [2, 3]. In this case, the 

trackerrepresents eachtarget candidate as a sparse linear combination of dictionary templates that can be 

dynamically updated to maintain an up-to-date target appearance model. This representation has been shown to be 

robust against partial occlusions, which leads to improved tracking accuracy. However, sparse coding based trackers 

perform computationally expensive l1 minimization at each frame. In a particle filter framework, computational cost 

grows sequentially with the number of particles sampled. 

 In [4], the multi-task tracking is proposed by Zhang, B. Ghanem, S. Liu, and N. Ahuja. In this method, same 

particle filter is used as multi-task sparse problem, here lp,q mixed norm is used which is used to regularize both the 

sparsity and particle representation. Before particles were delt independently but in this particles are 

interdependently used and mining that interdependence would improve the performance of the tracking. L1 tracker 

is also present here if p=q=1 is the case. Accelerated Proximal Gradient (APG) method yields the sequence of close 

forms updates. Heavy occlusion drawn illumination changes and large pose variation are solved here. 

 The traditional SR-based tracking method suffered from huge computational cost. In order to reduce this Bao et 

al. [5] adopted an accelerated proximal gradient approach. In this method there will be template created and sparse 

approximation is applied over a template set which lead to L1 tracker. To develop a robust and faster L1 tracker 

along with L1 norm minimization, L1 norm regularization was also implemented at trivial templates. The L1 norm 

minimization was accelerated using the accelerated proximal gradient approach. 
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In order to overcome computational cost and tracking accuracy in visual tracking, kernel Sparse representation is 

proposed in [1] by Lingfeng Wang, Hongping Yan, KeLv, and Chunhong Pan. The Sparse Representation tracker 

does not use sophisticated features to represent tracking objects. So kernel sparse representation (KSR) is presented 

by introducing the kernel method into Sparse Representation. Additionally making use of multikernel fusion method 

multiplesophisticated object features are considered during the tracking process. 

In this paper, we propose a novel weight optimization on multi-kernel fusion. Here, we develop an algorithm to 

optimize the weight updationinvolved in multi-kernel fusion on visual tracking system. This makes this algorithm to 

be adaptive and optimized. Particle Swarm Optimization (PSO) algorithm is introduced in order populate the weight 

value and update it in every iteration in order to attain the objective function which will provide us the sparsest 

realization of the feature from the frame. The previous work had put light on the multi-kernel fusion alone but we 

improve that to be a multiobjective optimization using Particle Swarm Optimization algorithm. 

The main advantages of using Particle swarm algorithm are: Faster convergence, less parameters to tune, easier 

searching in very large problem spaces, easy to perform, efficient in global search. 

II.SPARSE REPRESENTATION 

Sparse representation is the problem of determining a sparse multi-dimensional vector that satisfies a linear 

system of equation given high-dimensional observed data and a design matrix. Sparse approximation techniques are 

widely used in applications such as image processing. In numerical analysis, a sparse matrix is a matrix in which 

most of the elements are zero. By contrast, if most of the elements are nonzero, then the matrix is considered dense. 

The fraction of zero elements (non-zero elements) in a matrix is called the sparsity (density). 

Let X = [ ] ∈ be n training samples, where d is the feature length. In SR, the testing sample y 

∈  is sparsely represented on X via  minimization [1] 

 
whereλ is a slack variable that balances the reconstruction error and the sparseness of the coding vector β. The 

coding vector β is an vector. 

L1-minimization refers to finding the minimum L1-norm solution to an underdetermined linear system y=βx. 

Under certain conditions as described in compressive sensing theory, the minimum L1-norm solution is also the 

sparsest solution. 

In the SR-based tracker [2], training samples are the templates obtained in the initial frame, and the testing 

sample is a candidate obtained in the current frame. To describe occlusion,Mei and Ling [2] introduce a set of trivial 

templates O defined as 
 O = [I; −I] ∈ (2) 

WhereI ∈ is an identity matrix. Each column of the matrix I represents a positive occlusion template, while 

each column of the matrix −I represents a negative one. Hence, in [2], the samples for SR are = [X;O] 

∈ and the SR problem is performed on , namely [1] 

 
The size of the training sample decides the computational complexity of the calculations, i.e., the column 

number of X in (1). In practice, the training sample number n is greatly smaller than the feature length d. 

III.KERNEL SPARSE REPRESENTTION 

In order to reduce more expensive computation we bring in kernel sparse representation which would introduce a 

very fast and simple method of sparse representation. It implements a kernel trick on both the training samples (X) 

and the testing samples (y). 

It introduces a function called φ(·) which would map a feature vector into the kernel space.  φ(·) which satisfies 

φ(x φ(x)=1 when , which is the condition for convexity. 

The KSR can be written as [1], 

 
Recently, the KSR model has been applied to image classification [6]. In kernel method we need to find inner 

production so the formula can be rewritten as following [1] 

 
Where K is an n×n kernel matrix satisfying 
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K= (6) 

 

and K(i,y)= is an n×1 vector. 

The advantages of KSR on SR are as follows 

(1)The function φ( ) can be regarded as a feature extraction function.KSR can introduce sophisticated feature which 

will be insensitive to occlusion and illumination variation. 

(2)Multiple features can be introduced into KSR by applying multikernel fusion. 

One among multikernel fusion methods is the weighted multikernel fusion, where weighted summation is used 

to obtain a kernel 

K= (7) 

WhereK is the fused kernel; is the kernel of ith feature and  is its corresponding weight, satisfying = 1 

and ≥ 0. Similarly, the kernel vector 

K(.,y)= (8) 

Adaptive Multikernel fusion methods focus on the calculation of . This is calculated using PSO algorithm to 

get best value of . 

Particle swarm optimization (PSO)is a stochastic optimization approach which maintains a swarm of candidate 

solutions, referred to as particles [7, 8]. Particles are „„flown‟‟ through hyper-dimensional search space, with each 

particle being attracted towards the best solution found by the particles neighborhood and the best solution found by 

the particle. Swarm intelligence provides a usefulparadigm for implementing adaptive systems. 

PSO is used to solve the optimization problems. PSO is initialized with a group of random particles and searches 

for the optimized by updating. Each particle weight in every iteration is updated by following two "best" values. The 

first one in the group is called pbest and another tracked by the particle swarm optimizer in the population is called 

gbest. When a particle takes part of the population as its topological neighbors, the best value is a local best and is 

called lbest. 

After finding the two best values [14], the particle updates its velocity and positions with following equation (9) 

and (10). 

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[ ] - present[])                 (9) 

present[ ]  = present[ ] + v[ ]               (10) 

 

v[ ] is the particle velocity, present[] is the current particle (solution). pbest[] and gbest[] are defined as stated 

before. rand () is a random number between (0,1). c1, c2 are learning factors, usually c1 = c2 = 2.  

The pseudo code of the procedure is as follows[14] 
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By making use of PSO we can achieve the best 

weight value of the particle which would make the 

system adaptive and optimized. 

Further to optimize the KSR in equation (5) we need 

to use the kernel coordinate descent algorithm. KCD uses 

coordinate descent approach in [9] due to its simplicity 

and efficiency. Differentiate E(β) with respect to  and 

set it to 0 we get [1], 

 
 

=K(  (11) 

 

is changed independently  

When calculating we fix , Hence  is 

calculated as  

                           (12) 

 

In summary, by making efficient use of KCD algorithm, we can update iteratively the coding vector β by (12). 

The initialization of β is obtained by kernel ridge regression [1] 

 

(13) 

 

whereγ is set to a small positive value. In practice, we set to γ = 2λ. During implementation, the iterative number 

maxIter is set to five, which is sufficient to obtain a sparse solution. 

 

IV.PARTICLE FILTER-BASED TRACKING ALGORITHM 

 

The particle filter is a Bayesian sequential importance sampling technique for determining the posterior 

distribution of state variables characterizing a dynamic system. It provides a convenient framework for estimating 

and propagating the posterior probability density function of state variables regardless of the underlying distribution. 

It consists of essentially two steps: prediction and update. We implement our tracking algorithm within the particle 

filter framework [10], [11].  

 

Let be the state variable at time t, which is used to characterize the state of object, such as position, size, 

speed, and shape. Let be the observation at time t, while be all observations up to time t, namely, 

. Prediction is given by[1] 

 

(14)  

 

And update 

 

(15) 

 

 In particle filter,  is approximated by a set of N particles  with importance weights  , 

namely[1] 

 

 
 

For each particle  

    Initialize particle 

END 

 

Do 

    For each particle  

        Calculate weight value 

        If the weight value is better than the best 

weight value (pBest) in history 

            set current value as the new pBest 

    End 

 

    Choose the particle with the best weight value 

of all the particles as the gBest 

    For each particle  

 Calculate particle velocity according equation (9) 

Update particle position according equation (10) 

    End  

While maximum iterations or minimum error 

criteria is not attained 
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where is the Dirac function. When using prior distribution as the importance sampling function, the weight of 

the ith particle is iteratively updated by[1] 

 

(16) 

 

where  is the weight of the ith particle at previous time t − 1 and is the observation likelihood of the ith 

particle. The weights are normalized. 

 An affine image warping method is adopted for modeling the object motion in video sequence under the particle 

filter framework. Where this method consists of six parameters, they are } are deformation 

parameters and { are translation parameters. The candidate target region in the image is normalized to same 

size as object template via the object state in visual tracking. Here α is the state variable which is represented as a 

vector above six parameters. 

The dynamical model  is modeled by a Gaussian distribution with the assumption that the six 

parameters are independent of each other, that is[1] 

 

                              (17)                  

 

where  is a Gaussian distribution with the mean   and the covariance ∑. The covariance matrix ∑ is a 

diagonal covariance matrix whose elements are the corresponding variances of affine parameters. 

 The core of particle filter-based tracking depends on the observation likelihood model In actual fact, 

the SR based tracking method in [2] just improves it by using the SR. In this method [1], for the ith candidate object 

y, we first perform the PSO algorithm to get the optimized best weighted kernel then KCD algorithm to obtain the 

coding vector β. Then the observation likelihood  is calculated as the residual [1] 

 

   (18)            

 

where  is a constant. 

In order to compute (18), we need to specify kernels, which correspond to the selected features. In this paper [1], 

spatial color histogram and spatial gradient histogram are adopted to represent the object. The color feature has 

gained more attention as it is apowerful alternative to characterize the appearance of object, especially if it can 

achieve robustness against deformation and partial occlusion. 

 

Algorithm 1: KSR-Based Tracking Algorithm 

Data: The kernel matrix Kand the kernel vector K(·, 

y). 

Result: The coding vector β. 

Step 1:InitializeK and K(., y) by (7) and (8) ; 

Step 2: Initialize N particles   at time t = 1 ; 

Step 3: Initialize the weights of N particles 

; 

Step 4: for t = 2 to videoLengthdo 

Step 5:        for i= 0 to N do 

Step 6:Predicting the state of the ith particle  by                             

(19) 

Step 7: Calculateβ by Kernel Coordinate Descent 

Initialize the coding vector  
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For the ith candidate, we first obtain a rectangular 

region via its state parameter  . Then, rectangular 

region is divided into four subregions where in each 

subregion, we calculate a color subhistogram. The spatial 

color histogram  is obtained by connecting four 

subhistograms together. For the gradient feature, we first 

obtain image gradients by performing two filtering 

operations with kernels  and . As 

with the spatial color histogram, we can obtain for 

subhistograms of oriented gradients [12]. The spatial 

gradient histogram  is obtained by connecting four 

subhistograms together. 

In tracking algorithm, the object state is determined 

by the particle having the maximum weight. The initial 

position of the object manually selected from the first 

frame and it is used as the training samples. The 

remaining templates are generated by perturbating a few 

pixel around corner points of the first template. Here 

template number is set by balancing tracking efficiency 

and computational complexity. The templates are updated by replacing a template that has the smallest 

representation coefficient of the current tracked objectfor the changing target appearance. The particles are updated 

by (17).The state  for ith particle at current time t is calculated as 

 

 
 

V. RESULTS AND DISCUSSION: 

 

The Matlab based simulation was carried out to examine the validity of this method. A car video from the 

website [13] referred was used in our implementation. And the video that was taken had the occlusions like the 

shadow and tree shadows on the car. The result when multiple objects being in the same frame is given in the Fig1. 

 
Fig1. Tracking the Object while multiple Object on the same frame. 

 

The figure 2 depicts that the algorithm tracking the object while the shadow occlusion is available on the frame. 

The algorithm tracks the car passing under the bridge which is fully covered by shadow of bridge shown in fig.3 

considering the shadow occlusion. 

For running this program we used the PC with the following specifications 

Intel i5, 3.3GHz, 8GB RAM, 32 bit operating System Windows 7 with Matlab 2011b. 

 

Step 8: for k = 0 to maxIterdo 

Step 9:    for j = 0 to n do 

Step 10:    Calculatee(xj)by (11); 

Step 11:   Updateβj by (12); 

Step 12:    end 

Step 13: end 

Step 14:Calculate the observation likelihood by (18) ; 

Step 15:Update the weight of the ith particle by (16) ; 

Step 16:end 

Step 17:Compute the index of maximum weight, i.e., 

maxI= max ( ; 

Step 18: Obtaining the tracking state   

Step 19:Resampling (sampling with replacement) 

according to the weights  

Step 20: end 
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The execution time of the simulation took around 101.407737 seconds. The video with 600 frames were taken 

and the frame rate was taken as 17 frames /sec. 

The proposed algorithm could reduce the execution time but maintaining the accuracy the same. The 

multichannel method has helped the execution of the tracking more accurate even if there are occlusions like shadow 

on the car and near the car. 

 

 
Fig2. Tracking with shadow occlusion 

 

 
Fig.3. Tracking with full shadow on the Object 

 

 

VI.CONCLUSION 

A novel technique of optimizing the weight updation of the multikernel fusion is introduced. Although 

computational complexity is higher PSO would prove itself to be attaining a optimized output with reduced 

execution time. Matlab simulation would prove that the optimization of the weight updation would provide us a 

sparser kernel matrix. The PSO method used for weight optimization in the algorithm will help in implementing the 

algorithm faster. The execution time of the method was found to be faster than the earlier method but maintaining 

the accuracy the same. The tracking was found consistent with the occlusions like the shadow of the tree on the car, 

shadow of the car itself and the shadow of a bridge over the car. 



Vol-3 Issue-1 2017     IJARIIE-ISSN(O)-2395-4396 

3729 www.ijariie.com 646 

Acknowledgment 
I am very grateful and would like to thank my guide Asst. Prof. Vijaya Saratha for his advice and continued 

support. I would like to thank my friend for the thoughtful and mind stimulating discussion we had, which prompted 

us to think beyond the obvious. 

References 
[1]  Lingfeng Wang, Hongping Yan, KeLv, and Chunhong Pan, “Visual Tracking via Kernel Sparse Representation with 

Multikernel Fusion “IEEE transactions on circuits and systems for video technology, VOL. 24, NO. 7, JULY 2014. 

[2]  Liu, L. Yang, J. Huang, P. Meer, L. Gong, and C. Kulikowski. Robust and fast collaborative tracking with two stage sparse 

optimization. In ECCV, 2010.  

[3] X. Mei and H. Ling. Robust Visual Tracking and Vehicle Classification via Sparse Representation. TPAMI, 33(11):2259–

2272, 2011. 

[4] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual tracking via multi-task sparse learning,” in Proc. IEEE Conf. 

Comput. Vision PatternRecognit., Jun. 2012, pp. 2042–2049. 

[5] Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust l1 tracker using accelerated proximal gradient approach,” in Proc. IEEE 

Conf. Comput. Vision Pattern Recognit., Jun. 2012, pp. 1830–1837. 

[6] S. Gao, I. W.-H. Tsang and L.-T. Chia, “Sparse representation with kernels,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 

423–434, Feb. 2013. 

[7] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEEInternational Joint Conference on 

Neural Networks, IEEE Press, 1995, pp. 1942–1948. 

[8] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings ofthe Sixth International 

Symposium on Micromachine and Human Science, Nagoya, Japan,1995, pp. 39–43. 

[9] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models via coordinate descent,” J. 

Stat. Softw., vol. 44, no. 1, pp. 1–22, 2010. 

[10] M. Isard and A. Blake, “Condensation: Conditional density propagation for visual tracking,” Int. J. Comput. Vision, vol. 29, 

no. 1, pp. 5–28, 1998. 

[11] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via sparsity based collaborative model,” in Proc. IEEE Conf. 

Comput. Vision PatternRecognit., Jun. 2012, pp. 1838–1845. 

[12] N. Dalal and B. Triggs,”Histograms of oriented gradients for human detection,”inProc. IEEE Conf. Comput. Vision Pattern 

Recognit.,Jun. 2005, pp. 886-893. 

[13] www.ist.temple.edu. 

 

http://www.ist.temple.edu/

