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ABSTRACT 

 In this paper we will present one method of numerical resolution of modified version of forced real  fractional 

order  Van Der Pol Oscillator equation. . Numerical method for calculation of fractional derivative are the main 

tools for this resolution.  
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1 Introduction 

The concept of the fractional derivative is a subject almost old as the classical calculus that we know today . 

However this theory can be considered as a new subject also, since a little more than thirty years . In recent 

years, there has been considerable development in the resolution of fractional differential equations (see 

examples in [1], [2], [3]) . Drawing on  [9 ],[12], we decided to give a numerical resolution of modified version 

of forced real fractional order the Van Der Pol Oscillator. 

The Van der Pol oscillator (VPO) represents a nonlinear system with an interesting behavior that exhibits 

naturally in several applications. It has been used for study and design of many models including biological 

phenomena, such as the heartbeat,neurons, acoustic models, radiation of mobile phones, and as a model of 

electrical oscillators (implemented with a tunnel diode, memristor or operating amplifier).The VPO model was 

used by Van der Pol in 1920 to study oscillations in vacuum tube circuits. In the standard form, it is given by a 

nonlinear differential equation of type see [9] [12],: 

                                                
2"( ) ( ( ) 1) '( ) ( ) cos( )y t y t y t y t A t      (1) 

where   is the control parameter, A the amplitude,  the frequency. 

 Equation (1) can be rewritten into its state-space representation as follows: 
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with an equilibrium point in origin  

The system to solve is the modified version of the fractional order the Van Der Pol Oscillator equation  in the 

following form: : . 
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where  

 1q  and 2q  are orders (0 < 1 2,q q < 2)  

 ε > 0, > 0, 𝐴 > 0 

 
1 2( ); ( )y t y t  are the unknown functions  

 0

q

tD  is fractional derivative 

Its resolution requires the  fractional derivative theory  see[10] 

2 Numerical methods for calculation of fractional derivatives  

For numerical calculation of fractional-order derivatives we can use the relation 

(1) derived from the Grunwald-Letnikov  definition. This approach is based on the fact that for a wide class of 

functions, three definitions , Grunwald-Letnikov , Riemann Liouville and Caputo   are equivalent. The relation to 

the explicit numerical approximation of q-th derivative at the points kh  , (k=1,2,….) has the following form : 
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where mL  is the “memory length”, kt kh , h  is the time step of calculation and ( 1) j
q
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For their calculation we can use the following expression  [10] 
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Then, general numerical solution of the fractional differential equation 
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can be expressed as 
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For the memory term expressed by the sum, a “short memory” principle can be used. 

Then the lower index of the sums in relations (4) will be v = 1 for k < (Lm/h) 

and v = k−(Lm/h) for k > (Lm/h), or without using the “short memory” principle, 

we put v = 1 for all k. 

Obviously, for this simplification we pay a penalty in the form of some inaccuracy. 

see [11]. 

 

3 Discretization  

The discretiozation is obtained by (7), which leads to the equations in form : 
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Where  kt hk  , k=1,2,……,N. for 
T

N
h

  , T is  the simulation time and 
1 2( (0), (0))y y is a start point 

(initial conditions). The binomial coefficients 
( )

, 1,2,3iq

jc i   are calculated according to relation (5) 

4 Simulation 

4.1 Programming 

The programming under MATLAB of results of the dicretizations above is : 

 

 

 
     

In this program we take         ( )k kx t x  ( )k ky t y  1y x  2y y  
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4.2 Graphic representation 

 For this simulation we take the value from [9] and [12]  , hence : 

1eps    5A    1 1.2q   2 0.8q    x0=0.2   0 0.2y      

 

In this simulation we don’t use the short memory then we take  1  see [11] 

 

For the time step h=0.005,  T=60 

                         

                                 

 
 

   

          Graphical representation of the approximate solution of fractional order modified version of real 

fractional order the Van Der Pol Oscillator. 

 Conclusion 

The above results are some of what we got.Our perseptive is to apply the fractional derivative method for the 

equations in physical sciences : 

Stationary  and temporal quantum, electromagnetism and thermal 
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