
Vol-6 Issue-4 2020 IJARIIE-ISSN(O)-2395-4396

12431 www.ijariie.com 1140

OLAP ALGEBRAIC LAWS FOR

IMPROVING OLAP EXPRESSION TREES

Dr. Bhavesh Patel1, Dr. Jignesh Patel2, Dr. Badal Kothari3

1 Assistant Professor,|Department of Computer Science,H.N.G.University, Gujarat, India
2 Assistant Professor,|Department of Computer Science,H.N.G.University, Gujarat, India
3 Technical Assistant,|Department of Computer Science,H.N.G.University, Gujarat, India

ABSTRACT

OLAP algebra, In other words, we describe simple semantics representing a comprehensive Multi-dimensional

OLAP algebra that can directly exploit the clean Object-Oriented conceptual model. In this paper, we describe a

number of laws for our comprehensive OLAP algebra. To illustrate the motivation for this process, first recall that a
query in traditional relational databases, written in SQL, is translated internally into an initial relational algebra

expression that can be then transformed into equivalent, but more efficient ones by applying various relational

algebraic rules. In order to perform better joins between the cube and dimension tables, we change the restriction of

the selection operation so that it can be performed on the relevant cuboid/view alone. In summary, our

comprehensive OLAP query algebra (operations and laws), grammar and metadata storage are essential

components in the process of resolving OLAP queries written in native OOP languages.

Keyword: Algebraic Laws, MOLAP Algebra, Operation in MOLAP

Introduction

Object-Oriented OLAP queries are written at a very high level against the conceptual model, our OLAP query

processor must do a lot of additional processing to supply missing details. Thus, an OLAP query is translated

internally into an OLAP algebra expression that ultimately makes alternative forms of an OLAP query easier to
create, explore, manipulate and optimize (e.g., push and pull operations, replace operations). Specifically, when an

OLAP query is submitted to our OLAP DBMS, its query optimizer tries to find the most efficient equivalent OLAP

algebra expression before evaluating it.

For example, the most common relational algebraic laws are (1) pushing the selection (_) as far as possible, (2)

combining selection (_) with Cartesian product (X) to produce joins (∞), (3) introducing new projections (_) when

necessary, etc. In Figure 1(a), we can see how the SQL is transformed into an initial tree of relational algebra

operations. Figure 1(b) improves the initial expression by applying common relational algebraic rules in some

meaningful way. Specifically, we split the two parts of the selection (starname =name) and (birthdate LIKE

’%1960’). The first condition involves attributes from both sides of the product, but they are equated, so the product

and selection can be combined to produce an equijoin. The latter condition is pushed down the tree.

Vol-6 Issue-4 2020 IJARIIE-ISSN(O)-2395-4396

12431 www.ijariie.com 1141

Figure 1: (a) Translation of SQL to an initial relational algebra expression.

 (b) The effect of applying some relational algebra laws

Figure 2 illustrates an initial tree consists of operators from our OLAP algebra (i.e., SELECTION and

PROJECTION). Therefore, common OLAP analysis, such as the application of OLAP query constraints or
descriptive OLAP reports, could not be performed from the fact table alone since it is the dimension tables that store

descriptive attributes. In other words, we generally require joins between the cube and the dimension tables because

(i) the query constraints are often specified on the attributes of the dimensions and (ii) descriptive attributes make

OLAP reports easier to read. Moreover, we note that whenever descriptive dimension attributes are utilized by

OLAP algebra operators, inner joins are required between the fact table and dimension tables.

Figure 2: Initial OLAP algebra tree

Laws involving SELECTION

A selection result depends on inner/natural joins between the cube and dimension tables in order to exclude cube

rows that don’t satisfy the query restriction specified on the descriptive attributes of the dimension. In order to

perform better joins between the cube and dimension tables, we change the restriction of the selection operation so
that it can be performed on the relevant cuboid/view alone. Let the 2-dimensional cube C = <D, F, M, BasicCube>,

where D={Dim1, Dim2}, F={Dim1.Dim1ID, Dim2.Dim2ID}. Note that Dim1ID and Dim2ID are the most detailed

encoded values of dimensions Dim1 and Dim2.

LAW 1:

SELECTION (Dim1(C1) AND/OR Dim2(C2)) (C) = SELECTION (Dim1ID = x AND/OR Dim2ID = y)(C)

Vol-6 Issue-4 2020 IJARIIE-ISSN(O)-2395-4396

12431 www.ijariie.com 1142

Where x and y are two sets of Dim1IDs and Dim2IDs that satisfy the conditions C1 and C2 associated with

dimensions Dim1 and Dim2.

Justification: Suppose a cell c is in the result of the left expression. Then there must be a record r that satisfies the

restriction on dimension Dim1 and a record s that satisfies the restriction on dimension Dim2. Moreover, r and s
must agree with c on every attribute that each record shares with cell c (Dim1ID and Dim2ID).

Figure 3: Two-dimensional cube with the most detailed level values

When we evaluate the expression on the right, x is a set of Dim1IDs satisfying the restriction associated with Dim1,

while y is a set of Dim2IDs satisfying the restriction on dimension Dim2. Dim1ID of record r must be in set x and

Dim2ID of records must be in set y. Thus a cell c1 is in the result of the right expression. Consequently, Dim1ID

and Dim2ID of cell c1 must agree with one value from set x (Dim1ID of record r) and one value from set y (Dim2ID

of record s). Therefore, we can say that c and c1 is the same cell.

We use the same logic if the logical operator between dimension conditions is an OR operator. Figure 3 provides an

illustration of a very simple two dimensional view (called Sales) with the most detailed value stored for each

dimension in the cube.

Combining conditions

When we have two or more consecutive SELECTION operators, we can replace them by only one SELECTION

operator and connect their conditions with the AND operator(s). Thus, our second law for SELECTION is the

combining law:

LAW 2:

SELECTION (Cond1) (SELECTION(Cond2) C) =SELECTION (Cond1 AND Cond2)(C)

Justification: Suppose that a cell c is in the result of the left expression. Then the result of SELECTION(Cond2)C is

a sub-cube C1 that contains cell c that satisfies cond2. We apply SELECTION(Cond1) to C1. The result is a sub-

cube of the left expression that contains c that satisfies also Cond2. When we evaluate the right condition, cell c will

again be in the result since c satisfies Cond1 and Cond2. Since our OLAP server provides a very efficient multi-

dimensional indexing scheme, this rule allows the SELECTION operation to benefit from this multi-dimensional

indexing. Instead of accessing the appropriate R-tree index view to answer the first condition and then using the

result cube to answer the second condition, the multi-dimensional index view can be efficiently used to answer both

conditions simultaneously.

In addition to the above law, two SELECTION operators can be combined into only one SELECTION if there is a

UNION operator between them. Moreover, the conditions of both SELECTIONs are connected with the OR

operator. This law is written as follow:

Vol-6 Issue-4 2020 IJARIIE-ISSN(O)-2395-4396

12431 www.ijariie.com 1143

LAW 3:

(SELECTION(Cond1)C) UNION (SELECTION(Cond2)C) = SELECTION (Cond1 OR Cond2)(C)

Finally, LAW 2 and LAW 3 are very useful in any OLAP server that provides multidimensional indexing schemes

(e.g., R-tree).

Pushing laws

Selection is a very important operation from the point of view of OLAP query optimization. In particular, Selection

tends to reduce the size of the cubes. One of the most important objectives is to move the selection down the tree as

far as it will go without changing what the OLAP expression tree actually does. In addition, pushing SELECTION

down the tree makes it possible to be efficiently resolve the query from the apropriate multi-dimensional index view.

The next family of laws allows us to push the SELECTION through other OLAP operators. Thus, we refer to this set

of laws as the pushing laws. Figure 4 illustrates how the SELECTION can be pushed below other OLAP operators.

Figure 4: SELECTION pushing laws

LAW 4:

1. For a UNION, SELECTION must be pushed to both arguments of the UNION. p1 in Figure 4 illustrates

this rule.

2. For a DIFFERENCE, SELECTION must be pushed to the first argument of the operator or to both

arguments. For example, p2 in Figure 4 shows how we might push SELECTION to both arguments.

3. For an INTERECTION, SELECTION can be pushed to one of the arguments or both. p3 is an example of

how we might push SELECTION to the first argument.

4. For CHANGE LEVEL and CHANGE BASE, SELECTION is pushed down to the argument. p4 provides

an example of pushing SELECTION under CHANGE BASE.

5. For a DRILL ACROSS, SELECTION must be pushed to both arguments. p5 in Figure 4 shows this rule.

Justification: Suppose that a cell c is in the result of SELECTION(Cond) (C1 UNION C2). Then the result of (C1

UNION C2) has a cell c that satisfies the condition parameter of the SELECTION operator. In addition, c can be a

cell found only in C1, C2, or the result of two cells from both cubes C1 and C2. When we evaluate the right

expression, SELECTION(Cond)C1 UNION SELECTION(Cond) C2, c will again be in the result of the right

expression, because c matches the condition and can be found from C1, C2, or the result of the union.

Vol-6 Issue-4 2020 IJARIIE-ISSN(O)-2395-4396

12431 www.ijariie.com 1144

Pulling laws

Pushing a selection down an OLAP expression tree is one of the most important steps performed by the query

optimizer. However, we have found that in some situations it is essential to pull the SELECTION up the expression

tree as far as it will go, and then push it down all possible branches. Consider two views/cuboids (C1 and C2) of

Figure 5: (a) Initial OLAP expression tree and (b) its equivalent after applying the SELECTION pushing laws.

(PROJECTION(Product.Number, Time.Month, Units Sold)

(SELECTION(Time.Month = Dec)C2))INTERSECTION

PROJECTION(Product.Number, Time.Month, Units Sold)C1)

The OLAP expression tree of the above OLAP algebra expression is shown in Figure 6(a). In this OLAP algebra

tree, there is no way to push the SELECTION down the tree because it is already as far as it would go. We can pull

the SELECTION above the INTERSECTION and then push down if, and only if, the output of the

INTERSECTION contains all attributes that are mentioned within the SELECTION.

This mechanism of pulling up and then pushing down the SELECTION operator is advantageous because the size of

the view C1 is reduced in the intersection. Moreover, if C1 is stored in our server, then its R-tree index can be

efficiently used to find those rows satisfying the condition (Time.Month=Dec). However, without this condition all

cells in C1 must be accessed and read into the main memory.

Figure 6: (a) Initial OLAP expression tree. (b) Improving the initial expression by pulling SELECTION up and then

pushing it down the tree.

Vol-6 Issue-4 2020 IJARIIE-ISSN(O)-2395-4396

12431 www.ijariie.com 1145

Conclusion

We have described a comprehensive multi-dimensional OLAP algebra. Our algebra represents all common OLAP

operations reduces the complexity of using existing relational algebras to write OLAP queries (via SQL or MDX)

and also subsequently allows for the optimization of OLAP queries written in native OOP languages such as Java.

Moreover, we are providing optimization laws and execution algorithms that show how and why an OLAP algebra
is a good idea in practice. In association with the algebra, we have developed a robust DTD-encoded OLAP query

grammar that provides a concrete foundation for client language queries. The grammar, in turn, is the basis of a

native language query interface that eliminates the reliance on an intermediate, string-based embedded language.

Finally, the storage of the schema is done natively in XML.

In summary, our comprehensive OLAP query algebra (operations and laws), grammar and metadata storage are

essential components in the process of resolving OLAP queries written in native OOP languages. Further, we will

work on, how these components, as well as the storage engine, are integrated with the query compiler and execution

engine to form a pure OLAP DBMS.

References

[1] Microsoft analysis services. http://www.microsoft.com/sqlserver/2008/en/us/ analysisservices.aspx.

[2] Oracle essbase. http://www.oracle.com/us/solutions/ent-performancebi/business-

intelligence/essbase/index.html.

[3] Sap. http://www.sap.com/services/education/catalog/netweaver/bi.epx.

[4] Xml for analysis specification v1.1, 2002. http://www.xmla.org/index.htm.
[5] F.N. Afrati, C. Li, and J.D. Ullman. Generating efficient plans for queries using views. SIGMOD, pages 319–

330, 2001.

[6] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and S. Sarawagi. On the

computation of multidimensional aggregates. Proceedings of the 22nd International VLDB Conference, pages

506–521, 1996.

[7] C. Cunningham, G. Graefe, and C. A. Galindo-Legaria. Pivot and unpivot: Optimization and execution

strategies in an rdbms. In International conference on Very Large Data Bases (VLDB), pages 998–1009, 2004.

[8] E. Franconi and A. Kamble. The gmd data model and algebra for multidimensional information. In: Proc. of

the 16th Int. Conf. on Advanced Information Systems Engineering (CAiSE 2004)., 3084:446–462, 2004.

[9] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator generalizing

group-by, cross-tab, and sub-total. In International conference on Data Engineering (ICDE),Washington, DC,

USA, pages 152–159, 1996. IEEE Computer Society.
[10] O. Romero and A. Abello. On the need of a reference algebra for olap. In International conference on Data

warehousing and Knowledge Discovery (DaWak), pages 99–110, 2007.

http://www.oracle.com/us/solutions/ent-performancebi/business-intelligence/essbase/index.html
http://www.oracle.com/us/solutions/ent-performancebi/business-intelligence/essbase/index.html
http://www.sap.com/services/education/catalog/netweaver/bi.epx
http://www.xmla.org/index.htm

