ON THE GEOMETRY OF GENERALIZED WEINGARTEN HYPERSURFACES

Mohammed Abdelmalek¹

¹ ESM Tlemcen, Algeria

ABSTRACT

In this paper we derive a condition of transversality of two given hypersurfaces in pseudo-Riemnnaian manifolds, along its boundary. This condition is given by the ellipticciy of the Newton transformations.

Keyword : Newton transformations, Symmetric functions, Transversality.

1. INTRODUCTION

Let M^{n+1} an (n + 1) – dimensional connected Riemannian manifold and M^n be a closed hypersurface embedded in M^{n+1} . Denoting by $x_1, ..., x_n$ its principal curvatures.

For $1 \le k \le n-1$, we define the k – mean curvature H_k of M^n by

$$\binom{n}{k}H_k = \sigma_r(x_1, \dots, x_n).$$

Where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ and $\sigma_r : \mathbb{R}^n \to \mathbb{R}^n$ are the elementary symmetric functions define by

$$\sigma_r(x_1,\ldots,x_n) = \sum_{i_1 < \cdots < i_k} x_{i_1} \ldots x_{i_k}.$$

For instance, $H_1 = H$ is the mean curvature, H_2 is, up a constant, the scalar curvature and H_n is the Gauss curvature.

The Alexandrov's sphere theorem [1] states that the round sphere is the only closed hypersurface embedded in \mathbb{R}^{n+1} .

This result is not true for the case of immersed (and non embedded) hypersurfaces [16,10].

Ros [13] later prove that the above result is true for hypersurfaces of constant H_k for k>1, embedded in Euledean space. The result was generalized by Montiel and Ros [11] for hypersurfaces with constant H_k embedded in \mathbb{H}^{n+1} and \mathbb{S}^{n+1}_+ .

Koh [8] and Koh-Lee [9] later gived an analogue for the case of constant mean curvature ratio $\frac{H_k}{H_1}$ hypersurfaces.

In a recent work de Lima [5] gived a generalization of the Alexandrov theorem for the case of linear Weingarten hypersurfaces embedded in Euclidean space. That is an hypersurface where H_k and H are linearly related, this means that for a and b > 0, $H_k = aH + b$.

In this work we consider a compact generalized Weingarten hypersurfaces (or (r, s) – Weingarten hypersurface) embedded in \mathbb{R}^{n+1} . That is an hypersurface whose some of the k –mean curvatures H_k are lineary related. ie : for $0 \le s \le r \le n$, the relation

$$a_s H_s + \cdots + a_r H_r = b.$$

holds, where b > 0 and $(a_s, \dots, a_r) \neq (0, \dots, 0)$.

We prove the following result:

THEOREM

Let M^n be a closed, oriented (r, s) –Weingarten hypersurface embedded in \mathbb{R}^{n+1} with non vanishing k –mean curvature H_k .

If we have one of the following cases:

i. For some integers r and s satisfying the inequality $0 \le s \le r \le n - 1$, the following linear relation $a_s H_s + \dots + a_r H_r = b$,

holds, where b > 0 and a_i with $(a_s, ..., a_r) \neq (0, ..., 0)$.

ii. For some integer r where $0 \le r \le n - 1$, the relation

$$H_r = a_1 H_1 + \dots + a_{r-1} H_{r-1},$$

holds, with $(a_1, ..., a_{r-1}) \neq (0, ..., 0)$.

Then M^n is the geodesic hypersphere.

2. MAIN RESULTS

The main result in this work is:

THEOREM 1.

Let M^n be a closed, oriented (r, s) –Weingarten hypersurface embedded in \mathbb{R}^{n+1} with non vanishing k –mean curvature H_k .

If we have one of the following cases :

i. For some integers r and s satisfying the inequality $0 \le s \le r \le n - 1$, the following linear relation $a_s H_s + \dots + a_r H_r = b$,

holds, where b > 0 *and* $(a_s, ..., a_r) \neq (0, ..., 0)$.

ii. For some integer r where $0 \le r \le n - 1$, the relation $H_r = a_1 H_1 + \dots + a_{r-1} H_{r-1}$,

holds, with $(a_1, ..., a_{r-1}) \neq (0, ..., 0)$.

Then M^n is the geodesic hypersphere.

PROOF.

 $\varphi: M^n \to \mathbb{R}^{n+1}$ be an *n*-dimensional closed hypersurface embedded in \mathbb{R}^{n+1} . Denoting by *N* the unit vector field normal to M^n .

i. Since M^n is a compact and embedded in \mathbb{R}^{n+1} , it bounds a domain Ω in \mathbb{R}^{n+1} , $\partial \Omega = M^n$.

Moreover, always by compactness, M^n has at least an elliptic point, that is a point of M^n , where all the principal curvatures are positive. This imply that all H_r are positive functions.

For $1 \le i \le n$, the Minkoswki formula is written as (See [6])

$$\int_{M^n} H_{i-1} dM + \int_{M^n} H_i \langle \varphi, N \rangle dM = 0.$$

So

$$\sum_{i=1}^{r} a_{i} \int_{M^{n}} H_{i-1} dM = -\sum_{i=1}^{r} a_{i} \int_{M^{n}} H_{i} \langle \varphi, N \rangle dM = -\int_{M^{n}} b \langle \varphi, N \rangle dM.$$

On the other hand, since H_1 is strictly positif and by the inequality (See [11]) :

$$H_{k-1}.H_l \ge H_k.H_{l-1},$$

we obtain

$$\sum_{i=1}^{r} a_{i} \int_{M^{n}} H_{i-1} dM = \sum_{i=1}^{r} a_{i} \int_{M^{n}} H_{i-1} \frac{H_{1}}{H_{1}} dM,$$

$$\geq \sum_{i=1}^{r} a_{i} \int_{M^{n}} H_{i} \frac{1}{H_{1}} dM,$$

$$\geq b \int_{M^{n}} \frac{1}{H_{1}} dM,$$

$$\geq b(n+1) vol\Omega.$$

Where the last inequality follows from theorem 1 in [13].

On the other hand, by applying the divergence theorem, it is not difficult to see that

$$-\int_{M^n} b\langle \varphi, N \rangle dM = b(n+1) vol\Omega.$$

This imply that all the above inequalities are equals. In particular we obtain :

$$\int_{M^n} \frac{1}{H_1} dM = (n+1) vol\Omega.$$

Wich implies that M^n is the round sphere (See [6]).

ii. For $1 \le r \le n$ we have

$$\int_{M^n} H_{r-1} dM + \int_{M^n} H_r \langle \varphi, N \rangle dM = 0.$$

So,

$$\int_{M^n} H_{r-1} dM = -\int_{M^n} H_r \langle \varphi, N \rangle dM,$$
$$= -\sum_{i=1}^{r-1} a_i \int_{M^n} H_i \langle \varphi, N \rangle dM,$$
$$= \sum_{i=1}^{r-1} a_i \int_{M^n} H_{i-1} \langle \varphi, N \rangle dM.$$

Thus

$$\int_{M^n} \left(H_{r-1} - \sum_{i=1}^{r-1} a_i H_{i-1} \langle \varphi, N \rangle \right) dM = 0.$$

This gives

$$H_{r-1} = \sum_{i=1}^{r-1} a_i H_{i-1} \langle \varphi, N \rangle$$

and by a reccursive argument, we obtain

$$H_1 = C.H_0 = C.$$

Were C is a constant depend only on $a_1, ..., a_{r-1}$

Hence M^n is the round sphere.

3. REFERENCES

- [1] A. D. Aleksandrov, A characteristic property of spheres, Ann. Mat. Pura Appl.58 (1962) 303-315.
- [2] L.J.Alías, S. de Lira, J.M. Malacarne : Constant higher-order mean curvature hypersurfaces in Riemannian spaces. Journal of the Inst. of Math. Jussieu 5(4), 527-562 (2006).
- [3] L. J. Alías, J. M. Malacarne, Constant scalar curvature hypersurfaces with spherical boundary in Euclidean space, Rev. Mat. Ibero. 18 (2002), 431-442.
- [4] C. Aquino, H. de Lima, and M. Velasquez, A new characterization of complete linear Weingarten hypersurfaces in real space forms, Pacific J. Math. 261 (2013), no. 1, 33-43.
- [5] E.L. de Lima, A note on compact Weingarten hypersurfaces embedded in Rn+1, Arch. Math. December 2018, 111(6) (2018), 669-672.
- [6] C.C. Hsiung, Some integral formulas for closed hypersurfaces. Math. Scand. 2 (1954), 286--294.
- [7] N. J. Korevaar, Sphere theorems via Alexandrov constant Weingarten curvature hypersurfaces: appendix to a note of A. Ros, J. Differential Geom. 27 (1988), 221-223.
- [8] S.E. Koh, Sphere theorem by means of the ratio of mean curvature functions, Glasgow Math. J. 42(1) (2000), 91-95.
- [9] S.E. Koh and S.-W. Lee, Addendum to the paper: Sphere theorem by means of the ratio of mean curvature functions, Glasgow Math. J. 43(2) (2001), 275-276.
- [10] H. Z. Li, Y. J. Suh, and G. X. Wei, Linear Weingarten hypersurfaces in a unit sphere, Bull. Korean Math. Soc. 46 (2009), no. 2, 321-329.

- [11] S. Montiel and A. Ros, Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, in Differential Geometry, eds. B. Lawson and K. Tonenblat, Pitman Monographs & Surveys in Pure & Applied Mathematics, Vol. 52 (Longman Higher Education, 1991), 279-297.
- [12] R.C. Reilly, Variational properties of functions of the mean curvature for hypersurfaces in space forms, J. Differential Geom. 8 (1973), 465-477.
- [13] A. Ros, Compact hypersurfaces with constant higher order mean curvatures, Rev. Mat. Iberoamericana 3 (1987), 447-453.
- [14] H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sc. Math., 117 (1993), 211-239.
- [15] S. C. Shu, Linear Weingarten hypersurfaces in a real space form, Glasg. Math. J. 52 (2010), no. 3, 635-648.
- [16] D. Yang, Linear Weingarten spacelike hypersurfaces in locally symmetric Lorentz space, Bull. Korean Math. Soc. 49 (2012), no. 2, 271-284.

