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ABSTRACT 
 

In this paper we derive a condition of transversality of two given hypersurfaces in pseudo-Riemnnaian 

manifolds, along its boundary. This condition is given by the ellipticciy of the Newton transformations. 
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1. INTRODUCTION 

 

    Let 𝑀𝑛+1  an (𝑛 + 1) −  dimentional connected Riemannian manifold and 𝑀𝑛  be a closed hypersurface 

embedded in 𝑀𝑛+1. Denoting by 𝑥1, … , 𝑥𝑛 its principal curvatures. 

    For 1 ≤ 𝑘 ≤ 𝑛 − 1, we define  the 𝑘 − mean curvature 𝐻𝑘 of 𝑀𝑛 by  

(
𝑛
𝑘

) 𝐻𝑘 = 𝜎𝑟( 𝑥1, … , 𝑥𝑛). 

Where (
𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
 and 𝜎𝑟 ∶  ℝ𝑛 ⟶ ℝ𝑛

 are the elementary symmetric functions define by  

𝜎𝑟( 𝑥1, … , 𝑥𝑛) = ∑ 𝑥𝑖1
… 𝑥𝑖𝑘

𝑖1<⋯<𝑖𝑘

. 

For instance, 𝐻1 = 𝐻  is the mean curvature, 𝐻2  is, up a constant, the scalar curvature and 𝐻𝑛  is the Gauss 

curvature. 

    The Alexandrov's sphere theorem [1] states that the round sphere is the only closed hypersurface embedded in 

ℝ𝑛+1
. 

    This result is not true for the case of immersed (and non embedded) hypersurfaces [16,10]. 

    Ros [13] later prove that the above result is true for hypersurfaces of constant 𝐻𝑘  for k>1, embedded in 

Euledean space. The result was generalized by Montiel and Ros [11] for hypersurfaces with constant 𝐻𝑘 

embedded in ℍ𝑛+1
.and 𝕊+

𝑛+1. 

    Koh [8] and Koh-Lee [9] later gived an analogue for the case of constant mean curvature ratio 
𝐻𝑘

𝐻1
  

hypersurfaces. 

    In a recent work de Lima [5] gived a generalization of the Alexandrov theorem for the case of linear 

Weingarten hypersurfaces embedded in Euclidean space. That is an hypersurface where 𝐻𝑘 and 𝐻 are linearly 

related. this means that for 𝑎 and 𝑏 > 0, 𝐻𝑘 = 𝑎𝐻 + 𝑏. 
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    In this work we consider a compact generalized Weingarten hypersurfaces (or (𝑟, 𝑠) − Weingarten 

hypersurface) embedded in ℝ𝑛+1
. That is an hypersurface whose some of the 𝑘 −mean curvatures 𝐻𝑘 are lineary 

related. ie : for 0 ≤ 𝑠 ≤ 𝑟 ≤ 𝑛, the relation  

𝑎𝑠𝐻𝑠 + ⋯ . +𝑎𝑟𝐻𝑟 = 𝑏. 

 holds, where 𝑏 > 0 and (𝑎𝑠, … , 𝑎𝑟) ≠ (0, . . . ,0). 

    We prove the following result: 

THEOREM  

Let 𝑀𝑛 be a closed, oriented (𝑟, 𝑠) −Weingarten hypersurface embedded in ℝ𝑛+1 with non vanishing 𝑘 −mean 

curvature 𝐻𝑘. 

If we have one of the following cases: 

i. For some integers 𝑟 and 𝑠 satisfying the inequality 0 ≤ 𝑠 ≤ 𝑟 ≤ 𝑛 − 1, the following linear relation 

𝑎𝑠𝐻𝑠 + ⋯ . +𝑎𝑟𝐻𝑟 = 𝑏, 

holds, where 𝑏 > 0 and 𝑎𝑖 with (𝑎𝑠, … , 𝑎𝑟) ≠ (0, . . . ,0).  

ii. For some integer 𝑟 where 0 ≤ 𝑟 ≤ 𝑛 − 1, the relation 

𝐻𝑟 = 𝑎1𝐻1 + ⋯ + 𝑎𝑟−1𝐻𝑟−1, 

 holds, with (𝑎1, … , 𝑎𝑟−1) ≠ (0, . . . ,0). 

Then 𝑀𝑛 is the geodesic hypersphere. 

2. MAIN RESULTS 

    The main result in this work is: 

THEOREM 1. 

Let 𝑀𝑛 be a closed, oriented (𝑟, 𝑠) −Weingarten hypersurface embedded in ℝ𝑛+1 with non vanishing 𝑘 −mean 

curvature 𝐻𝑘. 

If we have one of the following cases : 

i. For some integers 𝑟 and 𝑠 satisfying the inequality 0 ≤ 𝑠 ≤ 𝑟 ≤ 𝑛 − 1, the following linear relation 

𝑎𝑠𝐻𝑠 + ⋯ . +𝑎𝑟𝐻𝑟 = 𝑏, 

holds, where 𝑏 > 0 and (𝑎𝑠, … , 𝑎𝑟) ≠ (0, . . . ,0).  

ii. For some integer 𝑟 where 0 ≤ 𝑟 ≤ 𝑛 − 1, the relation 

𝐻𝑟 = 𝑎1𝐻1 + ⋯ + 𝑎𝑟−1𝐻𝑟−1, 

 holds, with (𝑎1, … , 𝑎𝑟−1) ≠ (0, . . . ,0). 

Then 𝑀𝑛 is the geodesic hypersphere. 

PROOF. 

𝜑: 𝑀𝑛 ⟶ ℝ𝑛+1 be an 𝑛 −dimentional closed hypersurface embedded in ℝ𝑛+1.  Denoting by 𝑁 the unit vector 

field normal to 𝑀𝑛. 

i. Since 𝑀𝑛 is a compact and embedded in ℝ𝑛+1, it bounds a domain Ω in ℝ𝑛+1, 𝜕Ω = 𝑀𝑛 . 
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Moreover, always by compactness, 𝑀𝑛 has at least an elliptic point, that is a point of 𝑀𝑛, where all the principal 

curvatures are positive. This imply that all 𝐻𝑟  are positive functions. 

For 1 ≤ 𝑖 ≤ 𝑛, the Minkoswki formula is written as (See [6]) 

∫ 𝐻𝑖−1𝑑𝑀

𝑀𝑛

+ ∫ 𝐻𝑖〈𝜑, 𝑁〉𝑑𝑀

𝑀𝑛

= 0. 

So 

∑ 𝑎𝑖 ∫ 𝐻𝑖−1𝑑𝑀

𝑀𝑛

𝑟

𝑖=

= − ∑ 𝑎𝑖 ∫ 𝐻𝑖〈𝜑, 𝑁〉𝑑𝑀

𝑀𝑛

𝑟

𝑖=

= − ∫ 𝑏〈𝜑, 𝑁〉𝑑𝑀

𝑀𝑛

. 

 On the other hand, since 𝐻1 is strictly positif and by the inequality (See [11]) : 

𝐻𝑘−1. 𝐻𝑙 ≥ 𝐻𝑘 . 𝐻𝑙−1, 

 we obtain  

∑ 𝑎𝑖 ∫ 𝐻𝑖−1𝑑𝑀

𝑀𝑛

𝑟

𝑖=

= ∑ 𝑎𝑖 ∫ 𝐻𝑖−1

𝐻1

𝐻1

𝑑𝑀

𝑀𝑛

𝑟

𝑖=

,                    

          ≥ ∑ 𝑎𝑖 ∫ 𝐻𝑖

1

𝐻1

𝑑𝑀

𝑀𝑛

𝑟

𝑖=

, 

≥ 𝑏 ∫
1

𝐻1

𝑑𝑀

𝑀𝑛

, 

   ≥ 𝑏(𝑛 + 1)𝑣𝑜𝑙Ω. 

 Where the last inequality follows from theorem 1 in [13]. 

On the other hand, by applying the divergence theorem, it is not difficult to see that 

− ∫ 𝑏〈𝜑, 𝑁〉𝑑𝑀

𝑀𝑛

= 𝑏(𝑛 + 1)𝑣𝑜𝑙Ω. 

This imply that all the above inequalities are equals. In particular we obtain : 

∫
1

𝐻1

𝑑𝑀

𝑀𝑛

= (𝑛 + 1)𝑣𝑜𝑙Ω. 

 Wich implies that 𝑀𝑛 is the round sphere (See [6]). 

ii. For 1 ≤ 𝑟 ≤ 𝑛 we have  

∫ 𝐻𝑟−1𝑑𝑀

𝑀𝑛

+ ∫ 𝐻𝑟〈𝜑, 𝑁〉𝑑𝑀

𝑀𝑛

= 0. 

So, 
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∫ 𝐻𝑟−1𝑑𝑀

𝑀𝑛

= − ∫ 𝐻𝑟〈𝜑, 𝑁〉𝑑𝑀

𝑀𝑛

, 

                                  = − ∑ 𝑎𝑖 ∫ 𝐻𝑖〈𝜑, 𝑁〉𝑑𝑀

𝑀𝑛

𝑟−1

𝑖=1

, 

                                  = ∑ 𝑎𝑖 ∫ 𝐻𝑖−1〈𝜑, 𝑁〉𝑑𝑀

𝑀𝑛

𝑟−1

𝑖=1

. 

Thus 

∫ (𝐻𝑟−1 − ∑ 𝑎𝑖𝐻𝑖−1〈𝜑, 𝑁〉

𝑟−1

𝑖=1

)

𝑀𝑛

𝑑𝑀 = 0. 

 This gives 

𝐻𝑟−1 = ∑ 𝑎𝑖𝐻𝑖−1〈𝜑, 𝑁〉

𝑟−1

𝑖=1

. 

and by a reccursive argument, we obtain 

𝐻1 = 𝐶. 𝐻0 = 𝐶. 

 Were 𝐶 is a constant depend only on 𝑎1, … , 𝑎𝑟−1 

Hence 𝑀𝑛 is the round sphere. 
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