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ABSTRACT 

In this paper, we have considered the optimal solution of the reliability-redundancy allocation problems (RAP) 

involving chance constraints in non-crisp environment. The reliabilities of the components are not fixed numbers 

rather they are non-crisp/imprecise numbers. Also the constraints in the RAP considered are chance constraints 
which are stochastic in nature. We have proposed a stochastic simulation based Genetic Algorithm approach for 

solving the reliability optimization problems of the type mentioned in this paper. The impreciseness has been 

considered in terms of the stochastic approach and the interval approach.  In case of the stochastic approach, the 

reliabilities of the components are taken to be random variables which are distributed normally. After that Monte-

Carlo simulation method is used to convert the chance constraints into the deterministic ones.  The changed 

problem is then solved by the real coded genetic algorithm based on stochastic simulation and the constraint 

handling procedure. Few numerical examples are reported to explain the efficiency of the projected method. 

 

Keyword: - Optimization, Reliability-redundancy Allocation Problem, Non-crisp Number, Interval Number, 
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1. INTRODUCTION 

It has been assumed, in the most of the existing works available in the literature that all the probabilities are precise 

i.e., deterministic while solving stochastic optimization problems of reliability. The implication of deterministic 

probabilities is that the entire probabilistic information about the components as well as system behavior is available 

ready in hand.  The deterministic probabilistic information relies on the two situations mentioned below: 

a) All the probabilities or probability distributions are known or perfectly determinable. 

b) The system components are independent i.e., all the random variables, describing the component reliability 

behavior are independent. 

 
In the most of the optimization techniques in reliability optimization, the supposition on uncertainty is based on the 

exact probabilities and the reliabilities of the system components are to be known and fixed positive numbers which 

lying in [0,1] [4,8,15-17, 22- 24,31-33]. The precise system reliability can be calculated theoretically if both the 

aforementioned situations are fulfilled. Though, in the most of the situations of real-life phenomena where either the 

system is new or it exists only as a project, there do not exists plenty statistical data. Only some incomplete 

information about the system components is available. Thus the reliability of each component of a system becomes 

be an imprecise number. To deal with the problems with such imprecise numbers, generally stochastic, fuzzy and 

fuzzy-stochastic approaches are being adopted and the respective problems are transformed into deterministic 

problems before solving them. In fuzzy approach, the parameters, the constraints and objective function are 

considered as either fuzzy sets with known membership functions or fuzzy numbers whereas in stochastic approach, 

the system parameters are to be random variables with known probability distributions. On the other hand, in fuzzy-
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stochastic approach, some of the parameters are considered as fuzzy numbers and others as random variables. Apart 

from these approaches, interval method can be useful for this. In this method, an interval number is used to represent 

the imprecise number. For this representation, the system reliability would be interval valued. Only a few works has 

been reported in this area, considering the system parameters as interval valued. The works of Gupta et al. [6], 

Bhunia et al. [1], Sahoo et al. [26-30], Bhunia and Sahoo [5], Mahato et al. [19] must be mentioned in this context.  

 
In this paper, we have proposed a stochastic simulation based genetic algorithm approach [11, 12] for solving 

chance constrained [3,10,13,21] reliability optimization problem considering the reliability of each component of a 

system as either precise or imprecise number lying in [0,1]. To represent this impreciseness, we have applied 

stochastic and interval approach. In stochastic approach, the reliability of each component is considered as a random 

variable with normal distribution. At first, the chance constraints have been transformed into deterministic 

constraints by Monte-Carlo simulation technique [25]. Then the transformed problem has been solved by real coded 

genetic algorithm based constrained handling technique. To conclude the methodology as well as to test the 

performance of the proposed technique three numerical examples have been chosen for solving them using the 

method mentioned. 

 

2. NOTATIONS USED 
 

The notations which have been used in this paper are given in the table below 

 

Table -1: Notations Used 

 

Notation Description 

n number of subsystems 

jx  number of redundant components in the j-th subsystem 

 1 2, ,..., nx x x x  redundant vector 

jr  reliability of each component in the j-th subsystem which is precise 

,j jL jRr r r     reliability of each component in the j-th subsystem which is interval 

 2, jj
j rrr N m    

reliability of each component in the j-th subsystem which is stochastic in nature and 

follows normal distribution with parameters  and 
j jr rm   

      , ,S SSR x R x R x  precise system reliability, interval valued system reliability, stochastic system reliability 

   ,i ig x g x  precise and stochastic valued usability of  i-th constraint respectively 

, iib b  precise and stochastic valued total availability of i-th resource 

( 1),  j jl u  Lower and upper bounds of jx  

i  level of significance of i-th chance constraint 

P(A) probability of  the event A 

 ,U a b  uniform distribution over [a, b] 

 2,N m   normal distribution with parameters m  (mean) and   (standard deviation) 

popsize population size 

maxgen maximum number of generations 

pmute probability of mutation 

pcross probability of crossover 

 

 

 

 

3. ASSUMPTIONS 
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The assumptions which have been taken up in constructing the reliability-redundancy optimization problem with the 

chance constraints are,  

a) Reliability of each component may be precise, interval or, stochastic depending upon the problem. 

b) The system does fail on failure of a component of any subsystem  

c) All the redundancies are active and there is no provision of repairing of components. 

d) The components and also the system will have only two states either operating or failure. 
e) The system or any of the subsystem has only states, the operating state or the failure state. 

f) The resource constraints are chance constraints with resource vector as imprecise in nature. 

g) The coefficients in the left hand side of the resource constraints are precise or stochastic in nature 

depending upon the problem.  

 

4. FINITE INTERVAL ARITHMETIC 

 

An interval number [ , ]L RA a a  is defined to be the closed interval [ , ]L RA a a  { : , }L Rx a x a x   , 

where La , Ra  are the lower and upper bounds respectively and   is the set of all real numbers. The interval number 

[ , ]L RA a a  can also be represented in the centre and the width form as ,c wA a a , where  / 2c L Ra a a   and  

  / 2w R La a a   be the centre and radius of the interval A. It is to be noted that every real number x  can also 

be treated as a degenerate interval [ , ]x x  of zero width. The works of Hansen and Walster  [7] and Karmakar et al. 

[14] may be referred for details regarding interval arithmetic, integral power of interval number and also the n-th 
root as well as the rational power of interval number. 

 

Definitions: Let [ , ]L RA a a and [ , ]L RB b b be two intervals. Then the definitions of addition, subtraction, scalar 

multiplication, multiplication and division of interval numbers are as follows: 

 

Addition of two interval numbers A and B: [ , ] [ , ] [ , ].L R L R L L R RA B a a b b a b a b       

 

Subtraction of an interval number B from another one A: 

[ , ] [ , ] [ , ] [ , ] [ , ].L R L R L R R L L R R LA B a a b b a a b b a b a b           

Multiplication of an interval number A by any real number k:  For any real number k, 

[ , ] if 0
[ , ]

[ , ] if 0.

L R

L R

R L

ka ka k
kA k a a

ka ka k


  


 

 
Multiplication of two interval numbers A and B: 

[ , ] [ , ] [min( , , , ),max( , , , )].L R L R L L L R R L R R L L L R R L R RA B a a b b a b a b a b a b a b a b a b a b     

 

Division of an interval number A by another one B: 
1 1 1

[ , ] [ , ],  provided  0 [ , ]L R L R

R L

A
A a a b b

B B b b
     . 

Positive integral power of an interval number A: Let [ , ]L RA a a be an interval then for any non-negative integer 

n,  

[1,  1]                    if 0

[ ,  ]               if 0 or if  is odd

[ ,  ]               if 0 and  is even

[0,  max( ,  )] if 0  and ( 0) is even.

n n
L R Ln

n n
R L R

n n
L R L R

n

a a a n
A

a a a n

a a a a n





 


   

 

 

 

 

 



Vol-1 Issue-5 2015  IJARIIE-ISSN(O)-2395-4396 
 

1497 www.ijariie.com 701 

4.1 RANKING OF INTERVAL NUMBERS 

 

In order to solve the chance constrained stochastic reliability optimization problem taking the component reliability 

as interval valued, we have proposed a simulation based genetic algorithm method. Ranking of interval numbers is 

of utmost need to compare the objective values at each step of the iterations while using genetic algorithm, because 

the objective function of the chosen optimization problem is interval valued. 

 

The two arbitrary interval numbers [ , ]L RA a a  and [ , ]L RB b b  may be any of the following three types: 

 

Type 1:   The intervals are disjoint.  

Type 2:  The intervals are partially overlapping.  

Type 3: One of the intervals contains the other.  

 

During the last few decades, a few researchers reported about the ranking of interval numbers in different ways. 

Recently, Mahato and Bhunia [18] presented the modified definitions of ranking with respect to optimistic and 
pessimistic decision makers’ point of view for maximization and minimization problems separately. In 2012, Sahoo 

et al. [26] proposed the simplified definition of interval order relations ignoring optimistic and pessimistic decisions. 

It is to be mentioned that both the definitions by Mahato and Bhunia [18] and Sahoo et al. [26] report the equal 

outcome. 

 

Interval ranking for maximization problem: Let  [ , ] ,L R c wA a a a a   and [ , ] ,L R c wB b b b b   be two 

intervals. Then if  

max

forType 1andType 2 intervals

either  or forType 3 intervals, 

c c

c c w w c c R R

a b
A B

a b a b a b a b


 

     
 

the interval A  is accepted for maximization problems. The order relation “ max ” is reflexive, transitive but not 

symmetric. 

 

Interval ranking for minimization problem: Let  [ , ] ,L R c wA a a a a   and [ , ] ,L R c wB b b b b   be two 

intervals. Then if  

min

forType 1andType 2 intervals

either  or forType 3 intervals, 

c c

c c w w c c L L

a b
A B

a b a b a b a b


 

     
 

the interval A  is accepted for minimization problems. The order relation “ min ” is reflexive, transitive but not 

symmetric. 

 

 

5. UNIFORM DISTRIBUTION 
 

A continuous random variable X over the interval [a,b] is said to have uniform distribution if its probability density 

function  f x  is given by  

  
 

1
  if ,

0          otherwise.

x a b
f x b a




 


  

It is denoted by  , .X U a b  

 

6. NORMAL DISTRIBUTION 

A continuous random variable X is said to follow normal distribution with parameters m (mean) and 
2  (variance), 

denoted as  2
,X N m  , if its probability density function  f x is given by  
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    2
2

1 1
exp ;  - , ,  0.

2 2
f x x m x m 

 
     

 
  

 

 

7.  GENERATION OF RANDOM NUMBERS  
 

Random numbers are very important tool in stochastic simulation. Thus, finding of random numbers is a crucial part 

of simulation technique. Jana and Biswal [11,12] reported some algorithms to find random numbers based on 

different probability distributions.   

 
The sub function using C library for the generation of pseudo random numbers between 0 and RAND_MAX is 

                                                                         #include<stdlib.h> 

                                                                         int rand (void). 

where the value of RAND_MAX is defined in <stdlib.h>. Hence, a uniformly distributed random number can be 

generated from the given interval [a, b] according to the following algorithm. 

 

Algorithm for finding random numbers in case of uniform distribution in [a,b] 

Step 1: 
1

()rand   

Step 2: 
1
/ RAND_MAX   

Step 3:  Return .a b a   

This random number generator is denoted as U(a,b).  

 

Algorithm for finding random numbers in case of normal distribution in  2
, .N m   

Based on normal distribution, a random number between  ,m m    can be generated according to the 

following algorithm:  

Step 1: Generate  2 3
 and  from 0,1 .U   

Step 2: Compute     
1

2
2 3

2log sin 2 .
e

     

Step 3:  Return .m   

This random number generator is denoted as  2
, .N m   

 

8. PROBLEM FORMULATION 
 

Consider the n-stage parallel-series system as shown in Fig-1.  This system is consisted of n subsystems connected 

in series, where j-th subsystem consists of 
j

x  number of identical components connected in parallel. Assuming the 

reliability of each component as precise (fixed), we get the system reliability  SR x  as  

 
1

1 (1 ) j

n
x

S j

j

R x r


   
  . 

The objective is to maximize the overall system reliability subject to several resource constraints. Sometimes, the 

constraints are satisfied depending on chance, which are called the chance constraints. In this case, each constraint is 

taken to be an event of a random experiment. 
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Fig-1: The n-stage parallel series system 

 

Then, the chance constrained reliability-redundancy allocation problem for this parallel-series system with m 

constraints can be formulated as follows:  

 
1

Maximize 1 (1 ) j

n
x

S j

j

R x r


   
               (1) 

 subject to 

   P 1 ,   1,2,...,i i ig x b i m     

 and ,   1,2,..., .j j jl x u j n    

In problem (1), it is to be noted that all the parameters are assumed to be precise.  

 

Now, we want to formulate the problem corresponding to the same system having the interval valued reliabilities of 

the components and the random variates for the parameters involved in the left side of the constraints.  Also, the 
available resources are stochastic in nature. Then the corresponding problem can be formulated as follows: 

 

     Maximize ,S SL SRR x R x R x                 (2) 

subject to 

   P 1 ,  1,2,...,i iig x b i m       

 and ,   1,2,..., .j j jl x u j n    

where , ,j jL jRr r r      1 (1 ) jx

SL jRR x r    ,   1 (1 ) jx

SR jLR x r   ,   1,2,...,j n  and 

 2
,

ii
bi bb N m  ,   1,2,..., .i m  

 

Moreover, if the reliabilities of components in problem (1) are stochastic in nature and follow normal distribution, 

then the chance constrained stochastic reliability optimization problem becomes  

 

 
1

Maximize 1 (1 ) j

n
x

jS

j

R x r


   
                (3) 

subject to 

   P 1 ,  1,2,...,i iig x b i m      

 and ,   1,2,..., .j j jl x u j n    

where  2
,

jj
j rrr N m  ,   1,2,..., .j n  and  2

~ ,
ii

bi bb N m  ,   1,2,..., .i m  

Our objective is to solve the problems (1), (2) and (3). All these problems are nonlinear all integer programming 

problems with chance constraints. By transforming all these problems into deterministic problems, the reduced 
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problems can be solved by existing methods. However, in an alternative way, we can solve the same by stochastic 

simulation based genetic algorithm technique. 

 

9. STOCHASTIC SIMULATION 
 

In stochastic simulation for chance constrained optimization problem, at first the stochastic constraints are 

transformed into their respective deterministic equivalent forms to the given level of confidence. Let us consider the 

chance constraints as follows: 

  P , 1 ,  0< 1,  1,2,...,i i i ig x r b i m       

where  1 2, ,...., nr r r r is a n-dimensional continuous vector and each 
i

r  has a known distribution.  

Monte-Carlo simulation technique is used for estimating these chance constraints for a given x. Let us generate N 

independent vectors 
        1 2, ,...., ,   1,2,...,

s s ss
nr r r r s N  from their probability distributions. Let 

 1,2,...,iN i m  be the number of occurrences when all the constraints 
  , ( 1,2,..., )
s

i ig x r b i m    are 

satisfied. Then by the definition of probability we have 

1 ,   1,2,..., . i
i

N
i m

N



                                                                                                                (4) 

A solution is said to be feasible, if the condition (4) is satisfied for all i (i=1,2,3,…,m).     
 

The algorithm for calculating the value of /iN N  from the given chance constraints is as follows: 

 

Step-1: Initialize  0 1, 2,..., .iN i m    

Step-2: Generate random numbers according to the known distribution of the random variables .iR  

Step-3: Find all the values of   , ,  for all ,  1,2,..., .ig x r i i m  

Step-4: If 
  , ,
s

i ig x r b then 1, 1,2,..., .i iN N i m     

Step-5: Repeat Steps 2 -4  for N  times. 

Step-6: Find the ratio / , 1,2,..., .iN N i m    

Step-7: Stop. 

 

10. GENETIC ALGORITHM BASED CONSTRAINTS HANDLING APPROACH 
 

The optimization problems mentioned in the equations (1), (2) and (3) are the constrained optimization problems. 

Numerous techniques [20] have been reported to handle the constraints in genetic algorithms for solving the 
optimization problems. Gupta et al. [6] and Bhunia et al. [1] solved the optimization problems by using Big-M 

penalty technique. In this method, the given constrained optimization problem is transformed into an unconstrained 

optimization problem by penalizing by a large positive number say, M and called this penalty as Big-M penalty. In 

this work, we have used the Big-M penalty technique.    

 

The respective transformed problems of (1), (2) and (3) are as follows: 

 

Maximize ˆ ( )SR x                                                                                                                             (5) 

where 
if

ˆ ( )
if

S
S

R x S
R x

M x S




 





 

and    : P 1 ,   1,2,...,i i iS x g x b i m     be the feasible space.  
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Maximize
ˆ ( )SR x                                                                                                                             (6) 

where 
 

        ifˆ ( )
, if

S

S

R x S
R x

M M x S




  





 

and     : P 1 ,   1,2,...,i iiS x g x b i m     be the feasible space.  

 

Maximize
ˆ

( )SR x                                                                                                                             (7) 

where 
ifˆ

( )
if

S
S

R x S
R x

M x S




 






  

and     : P 1 ,   1,2,...,i iiS x g x b i m     be the feasible space.  

The problems given in equations (5), (6) and (7) are integer non-linear unconstrained optimization problems. For 

solving these problems, we have developed stochastic simulation based genetic algorithm (GA) with advanced 

operators for integer variables. 

 

10.1 THE GENETIC ALGORITHM 
 

The different steps of genetic algorithm [5,9] are given in the following algorithm: 

 

Algorithm 

 

Step-1: Initialize GA parameters (popsize, maxgen, pmute, pcross) and the bounds of each decision variables. 

Step-2: Set iteration 0.  

Step-3: Initialize the population i.e. popsize number of chromosomes. 

Step-4: Set iteration 1.iteration   

Step-5: Check the constraints using stochastic simulation. 

Step-6: Evaluate fitness function for each chromosome. 

Step-7: Use tournament selection to select chromosomes having better fitness values. 

Step-8: Apply crossover, mutation and elitist operators to update the chromosomes. 

Step-9: If iteration<maxgen, go to Step-4; otherwise go to Step-10. 

Step-10: Print the best chromosome along with the fitness value. 

Step-11: Stop. 

  

There are several GA parameters, viz. population size (popsize), maximum number of generation (maxgen), 

crossover rate i.e., the probability of crossover (pcross) and mutation rate i.e., the probability of mutation (pmute). 

There is no such hard and fast rule for selecting the population size for GA, how large it should be.  The population 

size is problem dependent and will need to increase with the dimensions of the problem.  Regarding the maximum 

number of generations, there is no clear indication for considering this value. It varies from problem to problem and 

depends upon the number of genes (variables) of a chromosome and prescribed as stopping/termination criteria to 

make sure that the solution has converged. From natural genetics, it is obvious that the rate of crossover is always 

greater than that of the rate of mutation. Generally, the crossover rate varies from 0.60 to 0.95 whereas the mutation 

rate varies from 0.05 to 0.20. Sometimes the mutation rate is considered as1 n where n  is the number of genes 

(variables) of the chromosome. At the beginning, GA needs the initialization of the population of solutions. If 

 1 2, ,...,   is integer,  1,2,...,n jx x x x j n  be the decision variables of the optimization problem to be solved, 

then each chromosome can be represented as  1 2( , ,..., ) ,  1,2,..., .p n pX x x x p popsize   Here the integer values 

of  1,2,...,jx j n  are initialized uniformly between   and 1,2,..., .j jl u j n  There are several procedures 

for selecting a random number of integer types. In this work, we have used the following algorithm for selecting an 
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integer number randomly. A random integer random number between  a and b can be generated as either x a g   

or, x b g   where g is a random integer between 1 and a b . 

 

Since the constraints of the problem are chance constraints with some known degree of significance, stochastic 

simulation technique has been applied for checking the constraints. 
 

Fitness function plays an important role in GA. This role is same for natural evolution process in the biological and 

physical environments. In our work, the value of objective function of the optimization problems corresponding to 

the chromosome is considered as the fitness value of that chromosome. 

 

The selection operator which is the first operator in artificial genetics plays an interesting role in GA. This selection 

process is based on the well known Darwin’s principle on natural evolution “survival of the fittest”. The primary 

objective of this process is to select the above average individuals/chromosomes from the population according to 

the fitness value of each chromosome and eliminate the rest of the individuals/chromosomes. There are several 

methods for implementing the selection process. In this work, we have used the well known tournament selection 

with size two.  

 
The exploration and exploitation of the solution space can be made possible by exchanging genetic information of 

the current chromosomes. After the selection process, other genetic operators, like crossover and mutation are 

applied to the resulting chromosomes those which have survived. Crossover is an operator that creates new 

individuals/chromosomes (offspring) by combining the features of both parent solutions.  It operates on two or more 

parent solutions at a time and produces offspring for next generation. In this work, we have used intermediate 

crossover for integer variables. 

 

The aim of mutation operator is to introduce the random variations into the population and is used to prevent the 

search process from converging to the local optima. This operator helps to regain the information lost in earlier 

generations and is responsible for fine tuning capabilities of the system and is applied to a single individual only. 

Usually, its rate is very low; because otherwise it would defeat the order building being generated through the 
selection and crossover operations. In this work we have used one-neighborhood mutation for integer variables. 

 

11. NUMERICAL EXAMPLES 

 
To illustrate the methodology and also to test the performance of the proposed algorithm, we have solved three 

different examples. In the first example, the values of component reliabilities are assumed to be precise whereas in 

second example, the component reliabilities are interval valued and the coefficients of the chance constraints and the 
available resources are normally distributed. In the third example, component reliabilities, coefficients of the chance 

constraints and available resources are normally distributed. 

 

Example-1: A four stage system with simple chance constraints is considered as a pure stochastic integer 

programming problem using the data from Table- 2. The problem in this case is  

 
4

1

Maximize 1 (1 ) jx

S j

j

R x r


   
         

subject to 

 
4

1

P 1 ,   1,2ij j i i

j

a x b i


   
 
  
 
  

 and 1 10,   1,2,3,4.jx j    

 

The problem has been solved using the proposed algorithm and the solution is given by the redundancy vector 

 5,4,5,4x   and the corresponding best found system reliability is   0.995946.SR x   

 

 



Vol-1 Issue-5 2015  IJARIIE-ISSN(O)-2395-4396 
 

1497 www.ijariie.com 707 

Table- 2: Input data for Example 1 

 

j 1 2 3 4 Available 

resource 
i
  

j
r

 0.75 0.80 0.75 0.85 

1 j
a  1.5 3.3 3.2 4.4 

1
b  55 0.10 

2 j
a  4.0 5.0 7.0 9.0 

2
b  125 0.15 

  

 

Example-2: A four stage system with stochastic chance constraints is considered as a pure stochastic integer 

programming problem with interval valued component reliability using the data from Table-3. The problem in this 

case is  

      Maximize ,S SL SRR x R x R x        

subject to 

 
4

1

P 1 ,   1,2ij ij i

j

a x b i


   
 
  
 
   

where , ,j jL jRr r r      1 (1 ) jx

SL jRR x r    ,   1 (1 ) jx

SR jLR x r    and 1 10,jx    1,2,3,4.j   

 

Table-3: Input data for Example 2 

 

j 1 2 3 4 
Available 

resource i  
jr  [0.50, 0.99] [0.50, 0.99] [0.50, 0.99] [0.50, 0.99] 

1 ja  N(1.5, 0.012) N(3.3, 0.052) N(3.2, 0.022) N(4.4, 0.012) 1b  N(55, 22) 0.10 

2 ja  N(4.0, 0.032) N(5.0, 0.042) N(7.0, 0.032) N(9.0, 0.022) 2b  N(125, 32) 0.15 

 

For different sets of values of   and also for different sets of values of  r, the problem of Example- 2 has been 

solved. The computational results have been shown in Tables-4 and 5. 

 

Table-4: Results for different sets of values of  
1 2
,    in Example-2 

 

 
1 2
,     

1 2 3 4
, , ,x x x x x  obj=[objL, objR] Centre value 

Computational 

time (in sec.) 

(0.10,0.15) 
(5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 0.52 

(0.15,0.15) (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 0.52 

(0.20,0.15) (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 0.52 

(0.25,0.15) (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 0.52 

(0.25,0.20) (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 0.52 

(0.25,0.25) (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 0.52 
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Table-5: Results for different sets of values of  
1 2 3 4
, , ,r r r r r  in Example-2 

 

1
r  

2
r  

3
r  

4
r   

1 2 3 4
, , ,x x x x x  obj=[objL, objR] Centre value 

[0.75, 0.75] [0.80, 0.80] [0.75, 0.75] [0.85, 0.85] (5,5,5,3) [0.994361, 0.994361] 0.994361 

[0.74, 0.76] [0.78, 0.81] [0.73, 0.78] [0.83, 0.86] (5,4,5,4) [0.994211, 0.997004] 0.995608 

[0.70, 0.80] [0.75, 0.85] [0.70, 0.80] [0.80, 0.90] (5,4,5,4) [0.989673, 0.998754] 0.994213 

[0.70, 0.90] [0.70, 0.90] [0.70, 0.90] [0.70, 0.90] (5,4,5,4) [0.979090, 0.999780] 0.989435 

[0.65, 0.99] [0.65, 0.99] [0.65, 0.99] [0.65, 0.99] (5,4,5,4); (5,5,4,4) [0.960048, 0.999999] 0.980024 

[0.70, 0.99] [0.70, 0.99] [0.70, 0.99] [0.70, 0.99] (5,4,5,4) [0.987387, 0.999999] 0.993693 

[0.50, 0.99] [0.50, 0.99] [0.50, 0.99] [0.50, 0.99] (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

 

 

Table-6: Sensitivity results w.r.t. popsize in Example-2 

 

popsize  
1 2 3 4
, , ,x x x x x  obj=[objL, objR] Centre value 

10 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

20 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

30 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

40 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

50 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

60 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

70 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

80 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

90 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

100 (5,4,5,4); (5,5,4,4) [0.824833, 0.999999] 0.912416 

 

Example-3:  A four stage system with stochastic chance constraints is considered as a pure stochastic integer 

programming problem with stochastic reliability components using the data from Table 7. The problem in this case 

becomes 

  
4

1

Maximize 1 (1 ) jx
jS

j

R x r


   
          

subject to 

 
4

1

P 1 ,   1,2.ij ij i

j

a x b i


   
 
  
 
   
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where  2
,

jj
j rrr N m  , 1 10,   1,2,...,4jx j    and  2

,
ii

bi bb N m  ,   1,2.i   

 

The computational results of this example are presented in the Table-8. From Table-8, we can see that the results are 

given for twenty independent runs for different random reliabilities components. It can be observed that the best 

found result corresponds to the 9th run. The best found system reliability is 0.999925 which corresponds for the 

reliability vector (0.85,0.80,0.68,0.85) and the redundancy vector (6,4,5,3). 
 

Table-7: Input data for Example-3 

 

j 1 2 3 4 Available 

resource i
  

jr  N(0.75, 0.012) N(0.80, 0.022) N(0.75, 0.012) N(0.85, 0.022) 

1 j
a  N(1.5, 0.012) N(3.3, 0.052) N(3.2, 0.022) N(4.4, 0.012) 1b  N(55, 22) 0.10 

2 j
a  N(4.0, 0.032) N(5.0, 0.042) N(7.0, 0.032) N(9.0, 0.022) 2b  N(125, 32) 0.15 

 

 

Table-8: Results for stochastic parametric values of  
1 2 3 4
, , ,r r r r r  in Example-3 

 

Run  
1 2 3 4
, , ,r r r r r   

1 2 3 4
, , ,x x x x x  R 

1  (0.70,0.72,0.78,0.77) (5,4,5,3) 0.999385 

2  (0.75,0.80,0.66,0.86) (5,4,5,3) 0.998852 

3  (0.75,0.80,0.75,0.85) (6,4,5,3) 0.999332 

4  (0.80,0.71,0.70,0.85) (6,4,5,3) 0.999714 

5  (0.83,0.90,0.75,0.82) (6,4,5,3) 0.999543 

6  (0.74,0.87,0.80,0.74) (6,4,5,3) 0.999598 

7  (0.75,0.76,0.75,1.00) (6,4,5,3) 0.999318 

8  (0.75,0.80,0.75,0.85) (6,4,5,3) 0.999344 

9  (0.85,0.80,0.68,0.85) (6,4,5,3) 0.999925 
10  (0.79,0.80,0.75,0.85) (6,4,5,3) 0.999817 

11  (0.68,0.82,0.75,0.80) (6,4,5,3) 0.999738 

12  (0.72,0.80,0.62,0.89) (6,4,4,3) 0.999430 

13  (0.75,0.80,0.68,0.83) (6,4,5,3) 0.999541 

14  (0.70,0.80,0.75,0.72) (6,4,5,3) 0.999633 

15  (0.71,0.77,0.74,0.85) (6,4,4,4) 0.999384 

16  (0.74,0.80,0.75,0.98) (6,4,5,3) 0.999422 

17  (0.71,0.94,0.75,0.80) (6,4,5,3) 0.999561 

18  (0.75,0.80,0.79,0.85) (6,4,5,3) 0.999461 

19  (0.73,0.91,0.79,0.85) (6,4,5,3) 0.999399 

20  (0.75,0.86,0.77,0.75) (6,4,5,3) 0.999555 

 

We have used real coded genetic algorithm to solve the problems under consideration. In this algorithm, we have 
used tournament selection, intermediate crossover and one neighborhood mutation as genetic operators. For this 

purpose, we have prepared the code for this algorithm in C Programming language.  The corresponding 

computational work has been done on a PC with Intel Core-2 duo processor in LINUX environment. For each 

problem, twenty independent runs have been performed to determine the best found system reliability which is very 

near the optimal value of system reliability. In this computation, the values of genetic parameters are taken as 

popsize=100, maxgen=50, pmute=0.85 and pcross=0.15 respectively.  

 

 

12. CONCLUSIONS 

For the first time, we have proposed simulation based genetic algorithm for solving Chance Constrained redundancy 

allocation problem considering imprecise component reliabilities. To represent this impreciseness, we have used the 
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stochastic and the interval approaches. For converting the chance constraints to its deterministic equivalent form, 

Monte-Carlo simulation technique is applied.  Then the transformed problem has been converted into unconstrained 

optimization problem with the help of Big-M penalty technique. To solve the transformed problem we have 

developed real coded genetic algorithm with tournament selection, intermediate crossover and one-neighbourhood 

mutation. In tournament selection process we have used the definitions of interval ranking. For solving the 

optimization problem, we have used the GA based Big-M penalty approach. In this approach, the value of fitness 
function is not computed for infeasible solution. For infeasible solution, the value of M may be taken depending on 

the fitness function value. A small value (in case of maximization problem) or a large value (in case of minimization 

problem) may be considered for M to solve the constrained optimization problem. For further research one may use 

the proposed methodology and simulation based genetic algorithm for solving optimization problems which are 

mostly arising in the areas of engineering disciplines and management sciences.  
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