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ABSTRACT 

 

Linear detectors like Zero Forcing (ZF) or Minimum Mean Square Error (MMSE) are crucial for large/massive MIMO 

systems for both downlink and uplink situations. However, these linear detectors require matrix inversion, which is 

computationally costly for such large systems. In this paper we note that it is not necessary to compute an exact inverse to find 

the ZF/MMSE solution and that an approximate inverse would produce similar performance. This is possible when the 

quantized solution computed with using the approximate inverse is the same a s that computed with the exact inverse. We 

quantify the amount of approach that can be tolerated for this to happen. Motivated by this, we propose to use existing iterative 

methods to obtain approximate inverses with low complexity. We show that after a sufficient number of iterations, inversion 

using iterative methods can yield similar error performance. Furthermore, we also show that the benefit of using an 

approximate inverse is not limited to linear detectors, but can be extended to non-linear detectors such as the sphere decoders 

(SD). An approximate inverse can be used for any SD that requires matrix inversion. We show that applying the approximate 

inverse leads to a smaller radius, which in turn reduces the search space, resulting in reduced complexit y. The numerical 

results support our claim that using approximate matrix inversion reduces decoding complexity in large/massive MIMO 

systems without performance loss due to errors. 
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1. INTRODUCTION 

Multiple-input multiple-output (MIMO) communication techniques have been an important area of focus for next -generation 

wireless systems because of their potential for high capacity, increased diversity, and interference suppression. In practice, the main 

challenge for MIMO systems is the receiver design that can obtain low error-rate performance with acceptable computational 

complexity. 

With the increasing demand for high performance, Multiple-Input-Multiple-Output (MIMO) systems with a large number of 

antennas are expected to become an indispensable part of fifth -generation radio technology. It uses a large number of antennas at 

once. Base station (on the order of hundreds) operated to serve relatively fewer users. However, we know that as the number of 

antennas increases, the complexity of the detection algorithms increases . Therefore, there is a need for techniques that, while 

exploiting the additional degrees of freedom, are able to efficiently decode the transmitted signal in terms of complexity and error 

behavior. downlink and as a decoder in a massive MIMO uplink. Even complex decoders for uplink transmission require calculation 

of the IF/MMSE solution. For example, neighborhood-based algorithms or scatter-based detectors use such linear detectors for 

initialization. a ZF or MMSE solution requires an array investment. However, finding an inverse is computationally expensive , 

especially when a large number of antennas are used. In  this article we argue that an approximate inverse matrix is sufficient to find 

a ZF/MMSE solution. In other words, using an approximate inverse does not degrade the quality of an IF/MMSE solution. S ince the 

solution obtained using linear detectors still needs to be quantized, it is clear that there is a way to use an approximate inverse as long 

as the quantized solution remains unchanged. We derive bounds on the approximation such that their quantize d IF/MMSE solutions 

equal the exact approximate inverse and in the expected sense. Furthermore, we show that the benefits of using an approximate 

inversion are not limited to linear detectors. 
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2. LITERATURE SURVEY 

This is possible if the quantized solution calculated using the approximate inverse is same as the one calculated us ing the exact 

inverse. We quantify the amount of approximation that can be tolerated for this to happen. 

Motivated by this, we propose to employ existing iterative methods for obtaining low complexity approximate inverses. We show 

that, after a sufficient number of iterations, the inverse using iterative methods can provide a similar error performance. 

In addition, we also show that the advantage of using an approximate inverse is not limited to linear detectors but can be extended to 

nonlinear detectors such as sphere decoders (SD). An approximate inverse can be used for any SD that requires matrix inversion. 

We show that the advantages of using an approximate inversion are not limited to linear detectors. Thus, a class of Sphere Decoding 

(SD) algorithms require the ZF solution for computing the Babai Radius (BR) consequently requiring matrix inversion. Hence, one 

can think of utilizing an approximate matrix inverse even in complex decoding schemes like SD. 

 

The approximate inverse has two advantages. Firstly, it reduces the complexity of matrix inversion. But secondly, and more 

importantly, we prove that it results in a smaller BR. This is a bigger advantage as complexity of decoding in such SD algorithms is 

largely governed by the choice of BR. Simulation’s  results for large/massive MIMO systems corroborate that the proposed SD 

provides a low complexity solution with no loss in error performance. 

Our SD approach incorporates both the strategies wherein we initialise with a BR computed using a low complexity iterative matrix 

inverse and also update the radius adaptively with every excellent point. The amount of updates while  employing this approach will 

be substantially reduced, as the radius would be adjusted only when a new point is closer to the broadcast s ignal than ZF. 

 

3. PROPOSED SOLULTION 

Consider a massive MIMO downlink with N transmit antennas at the base station and K users, each with a single receive a ntenna. 

Such a system can be represented by 

yd = Hdsd + nd, (1) 

where sd = Wxd, W is the linear precoder such as ZF or MMSE and xd is the N-dimensional signal vector transmitted by the base 

station. Each element in xd is drawn from a set Ω whose entries  belong to an MQAM constellation with an average symbol energy 

Es. Hd represents the K × N channel matrix whose elements are independently and  identically distributed (i.e.) with zero mean and 

unit variance, and nd is an i. Zero-mean Gaussian noise vector with dimension K × 1 and variance N0. The ith input of the yd vector, 

yi,d, is the signal destined for the ith user, for i = 1, 2, · · ·, K. Similarly, in the uplink Case be represented by. 

yu = Huxu + nu, (2)  

where xu is the K-dimensional transmitted signal vector whose ith entry is the symbol transmitted by the ith user, for i = 1, 2,  , K 

.Again, each element in xu is drawn from the set Ω, with an average symbol energy Es. Similarly, Huis the i N × K channel matrix, 

where each coefficient has zero mean and unit variance. The noise vector nu is i.N × 1 Gaussian, with each element having zero 

mean and N0 variance, and yu is the N-dimensional received signal vector at the base station.This results in a signal-to-noise ratio 

(SNR) KEs/N0  at each receiving antenna 

Linear detectors such as ZF and MMSE are useful for both  uplink and downlink (as precoders) in Massive MIMO systems. The 

expressions for these detectors can be expressed as  

xZF =  [(H
H

H) 
−1

H
H

y]                                              (3) 

xMMSE = [(H
H

H + N0/Es IK) 
−1

H
H

y] ,                       (4) 

where ⌈.⌋ is the quantization operator for the set Ω and H is the N × K -Channel Matrix Quantization allows us to use  approximate 

inversion instead of exact inversion while getting the same IF/MMSE solution. Since the operations are similar in both uplink and 

downlink, we only consider  the uplink scenario for the analysis. 

3.1. A LINEAR DETECTOR USING APPROXIMATE INVERSE 

Maximum likelihood (ML): This is the optimal detector from the point of view of minimizing the probability of error 
(assuming equiprobable x). The maximum likelihood detector with Gaussian noise at the receiver antennas solves the following 
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problem. The minimization is over x ∈ X Mt , i.e. over all possible transmitted vectors. Unfortunately, solving this problem 

involves computing the objective function for all X Mt potential values of x. Hence the ML detector has prohibitive (exponential 
in Mt) complexity. 

 

Minimum Mean Square Error (MMSE): it minimizes the square error between the received and the transmitted vectors, 
taking into account the noise and operating on each component, separately. This method is not able to reac h the maximum 

diversity order MrMt , but it is limited to Mr − Mt + 1. This causes a low Bit Error Rate (BER) at high SNRs.  

Zero forcing can cause noise amplification if the minimum singular value of H is too small. This may be quantified by the not ion 

of the condition number of the matrix H. The condition number of the matrix H is a measure of the relative magnitudes of the 
singular values of H. It is defined as the ratio between the largest and the smallest singular values of H. When the conditio n 

number is unity or close to unity, the matrix is said to be well conditioned. When the condition number is large, the matrix is ill 
conditioned. To reduce the sensitivity of linear receivers to the conditioning of the matrix H, we can add a regularization t erm to 

the objective function . Note that the minimization is only over all affine functions of y, which is parametrized by A and b. The 

expectation is over the randomness in x and n (the channel matrix H is assumed to be known and non random). If x were to be 
Gaussian (instead of being from discrete constellation points), this is also the MMSE detector. Compared to the ML detector, 

both the linear detectors are simpler to implement, but the BER performances are worse. 

 

3.2. SPHERE DECODING USING ITERATIVE MATRIX INVERSE 

Now, let us investigate the advantages of using iterative matrix inverses for non-linear detectors, such as SD. Presently, 

there are two main versions of SD. The first is the SchnorrEuchner enumeration, that updates the radius for SD adaptively, 

where after starting with an infinite radius, the search space shrinks with each good point until we get the optimal solution. 

In large/massive MIMO systems, such a technique would result in a huge decoding complexity. The other one is Fincke-

Pohst algorithm based SD, which uses a fixed radius approach, and all the points that are inside the search space defined by 

the radius are compared for detecting the transmitted signal. 
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This technique is extremely sensitive to the choice of the 

radius. It has been shown in the literature that both these approaches provide near ML performance. In this section, we propose 

a mechanism to reduce the complexity of SD. Our SD algorithm combines both the strategies wherein we initialize with a 

BR computed using a low complexity iterative matrix inverse and also update the radius adaptively with every good point. 

The number of updates when using this algorithm would be significantly less, as the radius will be updated only when a new 

point is closer to the transmitted signal than ZF. Also, we are always guaranteed a solution as the ZF solution is always inside 

the searched domain. In Algorithm 1, we show the steps of the proposed SD scheme. 

 

4. SIMULATION RESULT 

We have shown the advantages of using an approximate matrix inverse for detectors in large/massive MIMO systems. We obtained 

the maximum error which can be tolerated in the inverse to arrive at the same quantized ZF/MMSE solution. 
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fig -1 :Bit error performance for different SD schemes for a massive MIMO system with 32 base antennas and 8 users for 4-QAM. 

Simulation results show that iterative inversion methods, used to calculate the ZF and MMSE solutions, reached the same 

performance as provided by the exact inverse for sufficient number of iterations. Extending the idea to complex detectors like SD, 

we show that the value of BR calculated using iterative methods is less than the BR obtained through the exact method. To this end, 

we proposed an adaptive SD scheme that uses BR as the initial radius. Simulation results show that the propos ed SD scheme 

outperforms FP-SD and SE-SD in terms of complexity without any loss in performance. 

 

 

fig-2:Bit error performance for the ZF decoder in a massive MIMO system with N = 128, K = 8 for 16-QAM. 
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fig-3: Bit error performance for different SD schemes for a 16 × 16 large MIMO system for 4-QAM. 

 

fig-4:Average number of computations for different SD schemes for a 16 × 16 large MIMO system for 4-QAM. 

 

fig-5:Average number of computations for different SD schemes for a massive MIMO system with 32 base antennas and 8 users for 

4-QAM. 

5. CONCLUSIONS  

    We have shown the advantages of using an approximate matrix inverse for detectors in large/massive MIMO systems. We             

obtained the maximum error which can be tolerated in the inverse to arrive at the same quantized ZF/MMSE solution. Simulation 

results show that iterative inversion methods, used to calculate the ZF and MMSE solutions, reached the same performance as  

provided by the exact inverse for sufficient number of iterations. 

Extending the idea to complex detectors like SD, we show that the value of BR calculated using iterative methods is less than the BR 

obtained through the exact method. To this end, we proposed an adaptive SD scheme that uses BR as the initial radius. Simulation 

results show that the proposed SD scheme outperforms FP-SD and SE-SD in terms of complexity without any loss in performance 
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