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ABSTRACT 
 

 In this paper, we establish some Oscillation for the second-order half-linear dynamic equation. Our results 

not only unify the oscillation of half-linear differential and half-linear difference equations but can be applied on 

different types of time scales and improve some well-known results in the difference equation. 
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1.1 INTRODUCTION: 

In this paper, we are concerned with oscillation of second-order half-linear dynamic equation 

          ,               .….(1.1.1) 

on time scales, where    (H)  are positive, real-valued -continuous functions, and  is an odd positive 

integer. We shall also consider the two cases 

                                                                 …..(1.1.2) 
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and                                                               .….(1.1.3) 

      By a solution of (1.1.1), we mean a nontrivial real-valued function , , which has 

the property  and satisfying equation (1.1.1) for . The Riccati transformation 

technique, a simple consequence of Keller’s chain rule, and the inequality                 

,     ,                                                            …...(1.1.4) 

where  and  are nonnegative constants. 

1.2 SOME PRELIMINARIES ON TIME SCALES: 

           A time scale  is an arbitrary nonempty closed subset of the real numbers . On any time scale  we define 

the forward and backward jump operators by                     

                                                                   ..…(1.2.1) 

  The  graininess   function   for   a   time scale  is defined by .            

          For a function  (the range  of  may be actually replaced by any Banach space) the (delta) 

derivative is defined by 

                         ,                                            …..(1.2.2) 

         if  is continuous at  and  is right-scattered. If  is not right-scattered then the derivatives is defined by  

provided this limit exists.  

                         ,                                              ..…(1.2.3) 

       A function  is said to be right-dense continuous if it is right continuous at each right-dense point 

and there exists a finite left limit at all left-dense points, and  is said to be differentialbe if its derivative exists. A 

useful formula is 

                       .                                  …..(1.2.4) 
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       We will make use of the following product and quotient rules for the derivative of the product  and the 

quotient   (where  of two differentiable function  and  

                 ,                    …..(1.2.5) 

                   .                                                               …..(1.2.6) 

For , and a differentiable equation , the Cauchy integral of  is defined by 

                  .                                   …..(1.2.7) 

An integration by parts formula  

                                          .....(1.2.8) 

and infinite integrals are defined as 

              .                                 

In case , we have , , 

               and    

and in case , we have , , 

             and   , 

in the case , , we have , , 

      and      ; 

and in the case , , , we have , , 

         and  
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2  MAIN RESULTS: 

          We suppose that the time scale under consideration is not bounded above, i.e., it is a time scale interval of the 

form  Also, we will use the formula 

          d ,            ..…(1.3.1) 

 

Theorem 1.4: 

       Assume that (H) and (1.1.2) hold. Furthermore, assume that there exists a positive -differentiable function  

 such that  

    

 

             where  max . Then every solution of equation (1.1.1) is oscillatory on . 

Proof: 

     Suppose to the contrary that  is a no oscillatory solution of (1.1.1).  

Without loss of generality, we may assume that  is an eventually positive solution of (1.1.1) such that  

for all . We shall consider only this case, since the substitution  transforms equation 

(1.1.1) into an equation of the same form (1.1.1), we have ,                                       

…..(1.4.2) 

for all , and so  is an eventually decreasing function.  

      We first show that  is eventually nonnegative.  since  is a positive function, the decreasing 

function  is either eventually positive or eventually negative.      Suppose there exists an integer 

 such that . 

     By equation (1.4.2) we have  for , hence  

                            , 
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which implies by (1.1.2) that             

  

  

       which contradicts the fact that  for all . Hence  is eventually 

nonnegative.Therefore, we see that there is some  such that     ,  ,  , 

.   …..(1.4.4) 

Define the function  by  

 

Then , and using (1.2.5) and (1.2.6) we obtain 

 

 

From of (1.1.1) and (1.4.6), we get 

 

Using (1.4.3) we have , and then from the chain rule (1.3.1) we obtain 

 

 

 

 
       

 
 

It follows that from (1.4.7) and (1.4.8) that 
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From (1.4.4) since  we have 

                              

 

Substituting (1.4.10) in (1.4.9) we find that 

 

          

where .  

Let  

               

 

and  

              

 
 

Using inequality (1.1.4), we have 
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where . 

Thus, from (1.4.11) and (1.4.12) we obtain 

              

 
 

Integrating (1.4.13) from  to , we obtain 

 

                      

 
                

We have        

                     

 
 

for all large . This is contrary to 

       

 

                                                          Hence the proof. 

Theorem 1.5: 

         Assume that (H) and (1.1.3) hold. Let  be as defined in Theorem(1.4) such that (1.4.1) holds. If  
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Then every solution of equation (1.1.1) is oscillatory or converges to zero. 

Proof: 

        We assume that equation (1.1.1) has a nonoscillatory solution such that , for . 

       (we shall consider only this case, since the substitution 

  transforms equation(1.1.1) into an equation of the same form.) 

From the proof of theorem (1.4) 

       we see that there exist two possible cases for the sign of . 

      The proof when  is eventually positive is similar to that of the proof of Theorem (1.4) 

         Next, suppose that  for . 

        Then  is decreasing and  exists. 

We assert that . If not, then  for . 

Define the function 

                        , 

Then from equation (1.1.1) for , we obtain 

                       

                             . 

Hence, for  we have 

              

                     . 
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Since , 

Integrating the last inequality from  to , we have 

                  

 
 

By condition (1.5.1), we get  as , and this is a contradiction to the fact that  for . 

       Thus  and  as . 

                                                                                  Hence the proof. 

CONCLUSION 

        In this paper, by using the chain rule and the Riccati transformation technique, we have established some new 

oscillation of second-order half-linear dynamic equations on time scales. Our results not unify the oscillation of 

differential and difference equations but also improve the results of second-order half-linear difference equations. 
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