Parametric Comparison and Optimization of Process Parameters In Tig Welding With And Without Use Of Flux For SS 316
A Review Paper

Urvish Patel1, Divyesh Patel2, Priyesh N. Santoki3

1 Research scholar, Mechanical Engg. Dept., Venus International College of Technology-Gandhinagar, Gujarat, India
2 Asst. Prof. Divyesh Patel, Mechanical Engg. Dept., Venus International College of Technology-Gandhinagar, Gujarat, India
3 Asst. Prof. Priyesh N. Santoki, Mechanical Engg. Dept., Venus International College of Technology-Gandhinagar, Gujarat, India

ABSTRACT

The purpose of this study is to investigate the effect of the specific fluxes used in tungsten inert gas process. Tungsten Inert Gas Welding (TIG) is welding process which is used in those applications requiring a high degree of quality and accuracy. Effect of current, voltage, and gas flow rate on weld penetration on 7mm thick stainless steel 316 plate. Cr2O3 and TiO2 oxide powder were used to investigate the effect of activating flux on TIG weld penetration depth of 316 stainless steel. A-TIG welding was carried out with different process parameters are used like welding current (160-200A), voltage (10-14V), gas flow rate (5-15L/min).

Keyword: TIG welding, Taguchi method, 316 stainless steel, Weld penetration, Activated flux TIG welding

1. INTRODUCTION

Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding which uses an arc between a non-consumable tungsten electrode and the workpiece to be welded under a shielding gas is an extremely important arc welding process. The weld area is protected from atmospheric contamination by an inert shielding gas (argon or helium) and a filler metal is normally used through some welds, known as autogenous weld. Electrode is used only to create the arc in tungsten inert gas welding and it is not consumed in the weld [2]

Welding is used for permanent joints of metal. TIG welding is a part of welding process and it can be widely used in manufacturing industries, automobile industries, aerospace industries etc. TIG welding is used in morden industries for joining either similar or dissimilar materials. [14]

Gas tungsten arc welding process welding set utilized suitable power source, a cylinder of argon gas, welding torch having connection of cable for current supply, tube for shielding gas supply and tube water for cooling torch.[15]

1.1 CONSTRUCTION, WORKING AND PROCESS OF TIG WELDING

TIG welding makes use of a shielding gas like argon or helium to protect the welding area from atmospheric gases such as oxygen and nitrogen, otherwise which may cause fusion defects and porosity in the weld metal. TIG
equipment consists of a welding torch in which a non-consumable tungsten alloy electrode is held rigidly in the collet. Pressure regulator and flow meters are used to regulate the pressure and flow of gas from the cylinder.

![Schematic Diagram of TIG Welding Process][1]

The work pieces to be joined are cleaned to remove dirt, grease and other oxides chemically or mechanically to obtain a sound weld. This will avoid atmospheric contamination of the solidifying metal thereby increasing the strength of the joint.

2. LITERATURE REVIEW

Kuang-Hung Tseng et al [1] present the characteristics of duplex stainless steel in activated TIG welding. Duplex 2205 stainless steel plate was used as base metal in A TIG welding process. Powder form of TiO$_2$, MnO$_2$, SiO$_2$, MoO$_3$ and Cr$_2$O$_3$ were used as an activated flux. It was mixed with acetone and applied on the surface of base metal as plate form using paint brush. Duplex stainless steel 2205 of 6 mm thick plate was used as base metal. The experiments were carried out with and without activated fluxes at electrode diameter of 3.2 mm. It was concluded that using activated flux in TIG welding increased both the join penetration and the weld depth-to-width ratio. It was also concluded the SiO$_2$ flux produced a full joint penetration and the greatest weld depth-to-width ratio and using SiO$_2$, MoO$_3$ and Cr$_2$O$_3$ improved mechanical strength of grade SS2205 compared with conventional TIG weld.

Sanjay Nayee et al.[2] present investigation is to study the “Effect of Activating Fluxes on Mechanical and Metallurgical Properties of Dissimilar Activated Flux Tungsten Inert Gas Welds”. SA516Gr70 carbon steel and 304 austenitic stainless steel of 6 mm plate was used as a base metal. The mixture of TiO$_2$, ZnO and MnO$_2$ were used as a activated fluxes. It was concluded that highest D/W ratio achieve by TiO$_2$, ZnO fluxes. It was also observed that lowest angular distortion under TiO$_2$ compared to normal tungsten inert gas welds.

Dinesh Kumar et al. [3] present the parametric optimization in butt joint of 304L in TIG welding. Austenitic stainless steel sheet of 1.6 mm thin sheet was used as base metal. The most important parameters affecting the responses have been found as current and speed. The optimum parameters were found to be speed 125 mm/min, current 125 A, standoff 2 mm, frequency 3 Hz (constant), gas flow 10 lit/min (constant). Optimized process parameter would be solve the problem of corrosion and fatigue faced by the material, by improving the weld quality. At the same time, it increases the strength of the weld time with minimum heat affected zone. Good quality weld is obtained from face to root using.

Bhawandeep Singh et al. [4] presented the effect of active flux on mild steel in ATIG welding. Mild steel plate of 8 mm thickness was used as base metal. To increase the penetration oxide powder Cr$_2$O$_3$, MgCO$_3$ and 1:1 mixture of both these powder, Al$_2$O$_3$, MgO, and CaO also was used as activated flux. It was found that the Cr$_2$O$_3$ flux increased the penetration double time as compared with conventional tig welding. It was also found that the quality of weld increased by applying the flux. It was conclude that using CaO and Cr$_2$O$_3$ flux increase the depth to width ratio, therefore susceptibility to get crack also reduced.
Ahmadi et al. [5] presented the effect of activated flux in TIG welding. 316L stainless steel of 8 mm thick plate was used as base material. SiO\textsubscript{2} and TiO\textsubscript{2} oxide powders were used as activated fluxes. It was concluded that penetration depth was increased while using both fluxes and decreases the weld width. Activating fluxes improve the joint mechanical properties.

Abhishek Prakash et al. [6] presented the optimization of process parameters in activated TIG welding. Low carbon steel (ASTM A29) of 8 mm thick plate was used as base metal. It was observed that the welding current has the greatest influence on tensile and hardness in the welded sample of ASTM A29 followed by welding voltage and wire speed.

Ramkumar Devendranath et al. [7] studied on structure-property relationship and corrosion behavior of the activated flux TIG welding. Super duplex stainless steel (UNS S32750) of 5 mm thick plate was used as a base metal in TIG welding process. NiO, MoO\textsubscript{3} and SiO\textsubscript{2} fluxes were mixed with acetone and applied on the surface of base metal using paint brush. It was observed that better penetration and depth to width ratio was achieved by A-TIG welding process using NiO, MoO\textsubscript{3} and SiO\textsubscript{2} fluxes. It was observed that impact toughness and corrosion resistance to be greater for NiO flux owing to the lesser quantity of oxide inclusions.

Jun Shen et al. [8] reported the effect of welding current on properties of magnesium alloy joints in tungsten inert gas welding process. 6 mm thick plate was used as a base metal. It was observed that better penetration and depth to width ratio was achieved by A-TIG welding process using TiO\textsubscript{2} flux. It was also concluded that too high welding current decreased the D/W ratio.

Ahmadi, E et al. [9] conducted the experimental study for development and application of oxide based flux powder in ATIG welding process. Powder form of SiO\textsubscript{2}, TiO\textsubscript{2}, Cr2O\textsubscript{3}, and CaO were used as activated flux. Austenitic 316L Stainless Steel was used as base metal of 6 mm thickness. It was concluded that the weld penetration and D/W ratio increased while the weld metal width decreased. It was also found A-TIG welding can increase ultimate tensile strength of weldment.

Navid Moslemi, et al. [10] presented the Effect of Current on Characteristic for 316 Stainless Steel Welded Joint. 316 stainless steel pipe with diameter of 73 mm and 7.0 mm thickness was used as base metal. It was concluded that Arc current of 100 A has also been identified as the most suitable arc current used to weld the two and half inches 316 stainless steel pipe. The optimum TIG welding parameter (100 A) has been identified which may contribute to improve the productivity and cost effective process.

Yung-Chang Chen, et al. [11] reported the Cr2O3 Flux Assisted TIG Welding of Type 316L Stainless Steel Plates. Powder form of Cr2O3 Flux were used as activated flux. Stainless steel 316L of 5 mm thick plate was used as base metal. It was concluded that Cr2O3 flux produces a substantial increase in depth-to-width ratio of type 316L stainless steel welds. It was also concluded that the activated TIG welding can reduce the amount of heat input per unit length in a weld, and the residual stress of stainless steel 316L weldment can therefore be reduced.

Chih-Yu Hsu et al. [12] presented the Performance of activated TIG process in austenitic stainless steel welds. 316L Stainless Steel plate of 6 mm thickness was used as base plate. Powder form of MnO\textsubscript{2}, TiO\textsubscript{2}, MoO\textsubscript{3}, SiO\textsubscript{2}, and Al\textsubscript{2}O\textsubscript{3} Flux were used as activated flux. Fluxes were mixed with acetone and applied on the surface of base metal using paint brush. It was concluded that ATIG welding with SiO\textsubscript{2} and MoO\textsubscript{3} fluxes achieves an increase in weld depth and a decrease in bead width, respectively. It was also concluded that the SiO\textsubscript{2} flux can facilitate root pass joint penetration, but the Al\textsubscript{2}O\textsubscript{3} flux led to a deterioration in the penetration compared to the conventional TIG process for Type 316L stainless steel welds.

Devendranath Ramkumar et al. [13] studied on Effect of autogeneous GTA welding with and without flux addition on the microstructure and mechanical properties of AISI 904L joints. Super-austenitic stainless steel, AISI 904L plate of 5 mm thickness was used as base plate. The use of compound flux containing 85% SiO\textsubscript{2}–15% TiO\textsubscript{2} acquainted for better depth of penetration compared to autogeneous welding. It was concluded that bead on trial studies showed that the use of compound flux SiO\textsubscript{2}–TiO\textsubscript{2} had considerably increased the depth of penetration, almost thrice than that of without flux ones in the same condition.
3 CONCLUSIONS
From the literature survey, it concluded that the:
- Penetration depth is increased up to 200% than conventional TIG welding with using different kind of fluxes in A-TIG welding process
- There are various process parameters affecting in A-TIG welding like welding current, speed, rate of shielding gas, voltage, and tip angle.
- The distortion angle and width of weld bead is decreased with using different kind of fluxes.
- The creep rupture life is improved by using activated fluxes in A-TIG welding process.
- Depth of penetration can improve by using activated flux.

REFERENCES
