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ABSTRACT 

Robotics is the branch of mechatronics which deals with the study of robot. The path of a robot is of 

tremendous interest of development of technology. Here we have discussed the path of a robot in a plane. The path 

is an analogue of stream line of uniform flow of an ideal fluid in a plane. The linear transformation gives the 

complex velocity potential for the flow and its imaginary part gives stream line (Path). 

 

1. Introduction 

Terms one-dimensional, two-dimensional and three-dimensional flows, in fluid mechanics denote the 

number of Cartesian coordinates needed to describe a fluid flow. In general, it appears that any physical flow is 

three-dimensional. But these flows are problematic to study and needs to reduce the complexity. The simplification 

can be attained by neglecting any one of the directions that can reduce three-dimensional flow to two-dimensional 

flow. Fluid flow is called as two-dimensional when the fluid moves in such a way that at any given instant, the flow 

pattern in a plane is exactly same as that of in all other parallel planes of the fluid. Functions of one complex 

variable [1-4] are handy to study the two-dimensional flows or planar flows. Thus, fluid parameters in two variables 

are required. 

The velocity field 𝐹(𝑥, 𝑦), for an ideal fluid [5,6] in the plane is represented by  

𝐹(𝑥, 𝑦) = 𝛻𝜙(𝑥, 𝑦) 

where 𝜙(𝑥, 𝑦) is a real-valued function which satisfies the Laplace equation [7] 

∇2𝜙(𝑥, 𝑦) =0 

that is 𝜙(𝑥, 𝑦) harmonic, its harmonic conjugate 𝜓(𝑥, 𝑦) exists. The function 𝜙(𝑥, 𝑦) and 𝜓(𝑥, 𝑦) are called as 

velocity potential and stream function and the curves  

𝜙(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝜓(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

are equipotential curves and stream lines. The analytic function  

𝑤 = Ω (z) = 𝜙(𝑥, 𝑦) + i 𝜓(𝑥, 𝑦) 

is called the complex velocity potential of the flow.  

|
𝑑𝑤

𝑑𝑧
| gives the speed of the flow.  

2. Preliminaries     

2.1 Conformal Mapping 

Let w = f(z) be a complex mapping defined in a domain D and let z0 be a point in D. Then we say that 

w = f(z) is conformal at z0 if for every pair of smooth oriented curves C1and C2 in D intersecting at z0 the angle 

between C1and C2 at z0 is equal to the angle between the image curves C’1 and C’2 at f(z0) in both magnitude and 

sense. [8]             
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2.2 Theorem  

If  f is an analytic function in a domain D containing z0, and if f′(z0) ≠ 0, then w = f(z) is a conformal 

mapping at z0.[8] 

2.3 Theorem  

        If 𝑤 = 𝛺 (𝑧) = 𝜙(𝑥, 𝑦) + 𝑖 𝜓(𝑥, 𝑦) is a one-to-one conformal mapping of the domain 𝐷 in the z-plane onto a domain 𝐷′ in the w-plane such that the image of the boundary 𝐶 of 𝐷 is a horizontal line in the w-plane, then 𝑓(𝑧) = 𝛺′̅(𝑧) is a complex representation of a flow of an ideal fluid in 𝐷.[8] 

2.4 Theorem  

Suppose w = Ω (z) is a mapping from the domain D in the z-plane to a domain D′ in the w-plane. Let the 

boundary C of D is mapped onto a horizontal line in the w-plane, then Ω′̅(z) is a complex representation of uniform 

flow of an ideal fluid in D if and only if w = Ω (z) is a linear map. Further, equipotential curves and stream lines are 

straight lines perpendicular to each other [9].  

2.5 Theorem  

Let Ω′̅(z)  be a complex representation of a flow of an ideal fluid in the domain D. A mapping w = Ω (z) is 

linear if and only if D an infinite plate in the z-plane.[9]. 

 

3 Some Governing Equations [10-16] 

3.1 Equation of Continuity 

            The principle of conservation of matter, in a fluid region, say in the absence of inlets and outlets the amount 

of fluid remains same. This principle is termed as equation of continuity. 

The mathematical form of equation of continuity is                                                       

                                            
𝜕𝜌

𝜕𝑡
+  ∇. (𝜌𝑞) = 0                                                        

Where 𝜌 = 𝜌(𝑥, 𝑦, 𝑧, 𝑡) represents the fluid density at any point P (x, y, z) in cartesian, at any instant t. 

 If the pattern of flow is independent of the time at any instant of time t and location P (x, y, z) then 
𝜕𝜌

𝜕𝑡
= 0. 

Therefore, equation of continuity becomes  

                                                          ∇. (𝜌𝑞) = 0                   

For an incompressible, homogenous fluid, the density is constant in the entire fluid. 

Above equation becomes  

                                                              ∇. 𝑞 = 0      

3.2 Euler’s Equation of motion   

At time t if 𝐹 is force per unit mass with fluid density 𝜌 and pressure 𝑝 of moving fluid with velocity 𝑞 then 

the Euler’s equation is   

                                            
𝑑𝜌

𝑑𝑡
= 𝐹 −

1

𝑝
∇p                                                      

3.3 Bernoulli’s Equation  

For non-viscos fluid relation between velocity and pressure is the Bernoulli’s equation, first developed by 

Euler  
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                                                              𝑝 +
1

2
𝜌𝑞2 = 0      

4. Discussion 

Fluid flow is mainly governed by the equations in § 3 however the fluid flow as complex velocity potential 

is given in theorem 2.3, using same technique uniform flow is obtained in theorem 2.4.  by theorem 2.5 Ω′̅(z) gives 

the motion of fluid in plane in complex form if w = Ω (z) is linear mapping. So, we determine here few paths, using 

linear transformation, of robot moving in a plane. 

4.1 Path in a Horizontal Plane 

Let 𝐷 be an upper half plane, the domain, 𝑦 > 0 in z-plane  

Consider the linear transformation 

𝑤 = Ω (z) = 𝑧 + 2 

𝑢 (𝑥, 𝑦) = 𝑥 + 2 ; 𝑣 (𝑥, 𝑦) = 𝑦 

The stream lines of the flow, i.e. the family of paths are  

𝑣(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or 𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Therefore  𝛺′̅(z) = 1  is a complex representation of motion of robot. 

Therefore, speed is 

|
𝑑𝑤

𝑑𝑧
| = |Ω′ (z)| = |𝛺′̅(z)| = 1 

Obviously div 𝛺′̅(z) = 0  and curl 𝛺′̅(z) = 0. 

Thus, 𝑤 = Ω (z) = 𝑧 + 2 gives possible motion. 
 

4.2 Path in an inclined Plane 

. Consider the linear transformation 

𝑤 = Ω (z) = 𝑧 𝑒
−𝑖𝜋

4 , 

Defined in a plane. 

The paths of robot (stream lines of the flow) are 

𝑣(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or 𝑦 − 𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Therefore  𝛺′̅(z) = 𝑒
−𝑖𝜋

4   is a complex representation of possible motipn  

Therefore, speed  

|
𝑑𝑤

𝑑𝑧
| = |Ω′ (z)| = |𝛺′̅(z)| = 1 

5. Conclusion  

    Using linear transformation, path can be obtained in either horizontal or inclined plane as a stream 

line of uniform flow of an ideal fluid in the plane can be directly obtained. However, path on a vertical 

plane can not be practical importance as the vertical path of robot is not possible in practice.            
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