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Abstract: 

                    The thermosolutal stability of a viscous, conducting, incompressible and heterogeneous fluid layer 

confined between two free boundaries is studied in porous medium, when the system being investigated  is 

submerged in a uniform vertical magnetic field. Further the stationary, oscillatory and non-oscillatory modes 

are investigated.. The study of thermosolutal convection  in porous medium in a heterogeneous fluid is of great 

importance. The mathematical formulation of the stability theory proceeds from the non-linear partial 

differential equations. If the perturbed solution goes on departing from basic solution, the system is said to be 

unstable and on the other hand if this perturbed solution approaches to theoretical solution, as the time passes, 

the system is said to be stable. 
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Let a uniform magnetic field is applied to density stratified fluid layer in a porous medium and let fluid is 

rotating about vertical axes ),0,0(   with solute concentration S. Also suppose the fluid is to be taken to be 

non-homogeneous between two horizontal boundaries and heat is applied from below. Let 'T  and "T  

)"'( TT   denote the values of uniform temperatures at the two boundaries, respectively. Then the equations  

governing  the motion are : 
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where STe KKKwvuVP ,,,),,,(,,,   and C  denote respectively, the density, 

pressure, magnetic permeability, velocity component of the fluid, viscosity, medium permeability, thermal 

diffusivity of the fluid, coefficient of solute diffusion and solute concentration. 0  is the density of the fluid at 

the lower boundary at 0z . The whole system under the force of gravity ),0,0( gX i   and the )(zf  

is a monotonic function of vertical co-ordinate z  with 1)0( f . 

Let the initial state of the system be characterized by the following solution for velocity of the fluid, 

temperature, solute concentration, density, pressure and magnetic field, respectively, as  
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where   represents the uniform adverse temperature gradient maintained between the plates and 1 represents 

the solute concentration decreases upward.  

To analyse the stability of the fluid we perturb the basic state of the fluid given by equations (8) to (14). Let 

perturbed state of the fluid layer be given by  
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where PSwvu  ,,,),,,(  and ),,( zyx hhh  are respectively, the perturbation in the velocity of 

the fluid, temperature, solute concentration, density, pressure and the magnetic field. Substituting these variables 

in the equations (1) to (7) and taking the perturbation variables to be arbitrary small, the linearized  perturbation 

equations are as:  
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Sufficient Conditions for the stability of the System : 

In this section, we analyze the nature of perturbation modes, for this we will solve the eigen value problem 

consisting of following equations 
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A  is constant. We take the smallest value to n , that is, 1n  and so take the solution as  

zAw sin         

we get, 
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 we find the particular solution for ,Dz  and S , they are  
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Now eliminating ,Dz  and S  from above equations, we have 
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above equation  can be written in the following form also, 
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Since   is the complex growth rate of the perturbations and we can express ir i  , where 

r  and i  real and i  represents the oscillatory character of the perturbations. Substituting the value of   

in equation and taking the real part of the equation, we have for non-oscillatory modes )0( i . 
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where 
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102 xQaAAA   and 1103 APAA   

It is clear from the above equation that if  
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then all terms of equation  are positive, hence all the roots of the equation are negative. Therefore, equation 

represents the sufficient conditions for the stability of the system.  
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