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ABSTRACT 

 

The research of Radar Cross Section or RCS of simple and complex objects is decisively important to identify targets. 

Knowing the statistical characteristics of a target's RCS is crucial to the success of radar target detection algorithms. 

The RCS of any reflector may be thought of as the projected area of equivalent isotropic reflector. The equivalent 

reflector returns the same power per unit solid angle. The term RCS was used to describe the amount of scattered 

power from a target towards the radar, when the target is illuminated by RF energy. At that time, RCS was referred to 

as a target-specific constant. This was only a simplification and, in practice, it is rarely the case. In this chapter, the 

phenomenon of target scattering and methods of RCS calculation are examined. Target RCS fluctuations due to aspect 

angle, frequency, and polarization are presented. Radar cross section characteristics of some simples and complex 

targets are also introduced and treated. 
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1. INTRODUCTION 

When a target is illuminated by RF energy, it acts like an antenna, and will have near and far fields. Waves reflected 

and measured in the near field are, in general, spherical. Alternatively, in the far field the wave fronts are decomposed 

into a linear combination of plane waves. Assume the power density of a wave incident on a target located at range R 

away from the radar is PDi. The amount of reflected power from the target is 

 

(1) 

σ denotes the target cross section. Define PDr as the power density of the scattered waves at the receiving antenna. It 

follows that 

 

(2) 

remplacing Pr in (2) by its value in (1) we have 

 

(3) 

and in order to ensure that the radar receiving antenna is in the far field (i.e., scattered waves received by the antenna 

are planar), we can modify (3) to 

 

(4) 

The RCS defined by the equation (4) is often referred to as either the monostatic RCS, the backscattered RCS, or 
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simply target RCS. The backscattered RCS is measured from all waves scattered in the direction of the radar and has 

the same polarization as the receiving antenna. It represents a portion of the total scattered target RCS σt, where σt > σ. 

Assuming a spherical coordinate system defined by ( ρ, θ, ϕ ), then at range ρ the target scattered cross section is a 

function of ( θ, ϕ ). Let the angles ( θi, ϕi ) define the direction of propagation of the incident waves. Also, let the angles 

( θs, ϕs ) define the direction of propagation of the scattered waves. The special case, When θs = θi and ϕs = ϕi defines the 

monostatic RCS. The RCS measured by the radar at angles θs ≠ θi and ϕs ≠ ϕi is called the bistatic RCS. The total target 

scattered RCS is given by 

 

(5) 

The amount of backscattered waves from a target is proportional to the ratio of the target extent (size) to the 

wavelength, λ, of the incident waves. In fact, a radar will not be able to detect targets much smaller than its operating 

wavelength. For example, if weather radars use L-band frequency, rain drops become nearly invisible to the radar since 

they are much smaller than the wavelength. RCS measurements in the frequency region, where the target extent and the 

wavelength are comparable, are referred to as the Rayleigh region. Alternatively, the frequency region where the target 

extent is much larger than the radar operating wavelength is referred to as the optical region. 

In practice, the majority of radar applications fall within the optical region. 

The analysis presented in this book mainly assumes far field monostatic RCS measurements in the optical region. Near 

field RCS, bistatic RCS, and RCS measurements in the Rayleigh region will not be considered since their treatment 

falls beyond this book.s intended scope. Additionally, RCS treatment in this chapter is mainly concerned with Narrow 

Band (NB) cases. In other words, the extent of the target under consideration falls within a single range bin of the radar. 

Wide Band (WB) RCS measurements will be briefly addressed in a later section. Wide band radar range bins are small 

(typically 10 - 50 cm); hence, the target under consideration may cover many range bins. The RCS value in an 

individual range bin corresponds to the portion of the target falling within that bin. 

2. RCS PREDICTION METHODS 

Most radar systems use RCS as a means of discrimination. Therefore, accurate prediction of target RCS is critical in 

order to design and develop robust discrimination algorithms. Additionally, measuring and identifying the scattering 

centers (sources) for a given target aid in developing RCS reduction techniques. Two categories of RCS prediction 

methods are available: exact and approximate. Exact methods of RCS prediction are very complex even for simple 

shape objects. This is because they require solving either differential or integral equations that describe the scattered 

waves from an object under the proper set of boundary conditions. Such boundary conditions are governed by 

Maxwell’s equations. Even when exact solutions are achievable, they are often difficult to interpret and to program 

using digital computers. Due to the difficulties associated with the exact RCS prediction, approximate methods 

become the viable alternative. The majority of the approximate methods are valid in the optical region, and each has its 

own strengths and limitations. Most approximate methods can predict RCS within few dBs of the truth. Some of the 

most commonly used approximate methods are Geometrical Optics (GO), Physical Optics (PO), Geometrical Theory 

of Diffraction (GTD), Physical Theory of Diffraction (PTD), and Method of Equivalent Currents (MEC). Interested 

readers may consult Knott or Ruck (see bibliography) for more details on these and other approximate methods. 

3. Dependency on Aspect Angle and Frequency 

Radar cross section fluctuates as a function of radar aspect angle and frequency. For the purpose of illustration, 

isotropic point scatterers are considered. An isotropic scatterer is one that scatters incident waves equally in all 

directions.  

For example, two unity (1m
2
) isotropic scatterers are aligned and placed along the radar line of sight (zero aspect angle) 

at a far field range. The spacing between the two scatterers is 1 meter. The radar aspect angle is then changed from zero 

to 180 degrees, and the composite RCS of the two scatterers measured by the radar is computed. 

This composite RCS consists of the superposition of the two individual radar cross sections. At zero aspect angle, the 

composite RCS is 2m
2
. Taking scatterer-1 as a phase reference, when the aspect angle is varied, the composite RCS is 

modified by the phase that corresponds to the electrical spacing between the two scatterers. For example, at aspect 

angle 10°, the electrical spacing between the two scatterers is 

 

(6) 

with λ is the radar operating wavelength. 
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RCS is dependent on the radar aspect angle; thus, knowledge of this constructive and destructive interference between 

the individual scatterers can be very critical when a radar tries to extract the RCS of complex or maneuvering targets. 

This is true because of two reasons. First, the aspect angle may be continuously changing. Second, complex target RCS 

can be viewed to be made up from contributions of many individual scattering points distributed on the target surface. 

These scattering points are often called scattering centers. Many approximate RCS prediction methods generate a set of 

scattering centers that define the backscattering characteristics of such complex targets. 

Next, to demonstrate RCS dependency on frequency, consider the following experiment : two far field unity isotropic 

scatterers are aligned with radar line of sight, and the composite RCS is measured by the radar as the frequency is 

varied from 8 GHz to 12.5 GHz (X-band). In this case, RCS fluctuation as a function of frequency is evident. Little 

frequency change can cause serious RCS fluctuation when the scatterer spacing is large. Alternatively, when scattering 

centers are relatively close, it requires more frequency variation to produce significant RCS fluctuation.  

Assume that the two scatterers complete a full revolution about the radar line of sight in Trev = 3 sec. Furthermore, 

assume that an X-band radar ( f0 = 9 GHz ) is used to detect (observe) those two scatterers using a PRF fr = 300 Hz  for 

a period of 3 seconds. Finally, assume a NB bandwidth BNB = 1 MHz and a WB bandwidth . It follows that the radar.s 

NB and WB range resolutions are respectively equal to ΔRNB = 150 m and ΔRWB = 7.5 cm. Clearly, the two scatterers are 

completely contained within one range bin. The two scatterers are now completely resolved as two distinct scatterers, 

except during the times where both point scatterers fall within the same range bin. 

4. RCS DEPENDENCY ON POLARIZATION 

The material in this section covers two topics. First, a review of polarization fundamentals is presented. Second, the 

concept of the target scattering matrix is introduced. 

The x and y electric field components for a wave traveling along the positive z direction are given by 

 

(7) 

 

(8) 

  

where k = 2π ⁄ λ, ω is the wave frequency, the angle δ is the time phase angle which Ey leads Ex, and, finally, E1 and E2 

are, respectively, the wave amplitudes along the x and y directions. When two or more electromagnetic waves 

combine, their electric fields are integrated vectorially at each point in space for any specified time. In general, the 

combined vector traces an ellipse when observed in the x-y plane. 

The ratio of the major to the minor axes of the polarization ellipse is called the Axial Ratio (AR). When AR is unity, the 

polarization ellipse becomes a circle, and the resultant wave is then called circularly polarized. Alternatively, when 

E1=0 and AR=∞ the wave becomes linearly polarized. 

The equation (7) and (8) can be combined to give the instantaneous total electric field, 

 

(9) 

where âx and ây  are unit vectors along the x and y directions, respectively. At z = 0, Ex=E1sin(ωt) and Ey=E2sin(ωt + 

δ) , then by replacing by the ratio and by using trigonometry properties equation (9) can be rewritten as 

 

(10) 

Note that equation (10) has no dependency on ωt. 

In the most general case, the polarization ellipse may have any orientation. The angle is called the tilt angle of the 

ellipse. In this case, AR is given by 

 

(11) 

When E1 = 0, the wave is said to be linearly polarized in the y direction, while if E2 = 0 the wave is said to be linearly 

polarized in the x direction. Polarization can also be linear at an angle of 45° when E1 = E2 and ξ = 45°. When E1 = E2 

and δ = 90° the wave is said to be Left Circularly Polarized (LCP), while if δ = -90° the wave is said to Right Circularly 

Polarized (RCP). It is a common notation to call the linear polarizations along the x and y directions by the names 

horizontal and vertical polarizations, respectively. 

In general, an arbitrarily polarized electric field may be written as the sum of two circularly polarized fields. More 

precisely, 
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where and  are the RCP and LCP fields, respectively. Similarly, the RCP and LCP waves can be written as 

 

(13) 

 

(14) 

where  and  are the fields with vertical and horizontal polarizations, respectively. Combining the equations 

(13) and (14) yields 

 

(15) 

 

(16) 

 

Using matrix notation the equations (15) and (16) can be rewritten as 

 

(17) 

 

(18) 

For many targets the scattered waves will have different polarization than the incident waves. This phenomenon is 

known as depolarization or cross-polarization. However, perfect reflectors reflect waves in such a fashion that an 

incident wave with horizontal polarization remains horizontal, and an incident wave with vertical polarization remains 

vertical but is phase shifted . Additionally, an incident wave which is RCP becomes LCP when reflected, and a wave 

which is LCP becomes RCP after reflection from a perfect reflector. Therefore, when a radar uses LCP waves for 

transmission, the receiving antenna needs to be RCP polarized in order to capture the PP RCS, and LCR to measure the 

OP RCS. 

Target backscattered RCS is commonly described by a matrix known as the scattering matrix, and is denoted by [S]. 

When an arbitrarily linearly polarized wave is incident on a target, the backscattered field is then given by 

 

(19) 

The superscripts i and s denote incident and scattered fields. The quantities sij are in general complex and the subscripts 

1 and 2 represent any combination of orthogonal polarizations. More precisely, 1 = H,R, and 2 = V,L. From the 

equation (1.03), the backscattered RCS is related to the scattering matrix components by the following relation : 

 

(20) 

It follows that once a scattering matrix is specified, the target backscattered RCS can be computed for any combination 

of transmitting and receiving polarizations. The reader is advised to see Ruck for ways to calculate the scattering 

matrix [S]. 

Rewriting the equation (20) in terms of the different possible orthogonal polarizations yields 
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(22) 

 

By using the transformation matrix [T] in equation (17), the circular scattering elements can be computed from the 

linear scattering elements 

 

(23) 

and the individual components are 

 

(24) 

 

Similarly, the linear scattering elements are given by 

 

(25) 

and the individual components for that one are 

 

(26) 

5. RCS DEPENDENCY OF SIMPLE OBJECTS 

In all cases, except for the perfectly conducting sphere, only optical region approximations are presented. Radar 

designers and RCS engineers consider the perfectly conducting sphere to be the simplest target to examine. Even in this 

case, the complexity of the exact solution, when compared to the optical region approximation, is overwhelming. Most 

formulas presented are Physical Optics (PO) approximation for the backscattered RCS measured by a far field radar in 

the direction (θ,ϕ),  

In this section, it is assumed that the radar is always illuminating an object from the positive z-direction. 

Due to symmetry, waves scattered from a perfectly conducting sphere are co-polarized (have the same polarization) 
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with the incident waves. This means that the cross-polarized backscattered waves are practically zero. For example, if 

the incident waves were Left Circularly Polarized (LCP), then the backscattered waves will also be LCP. However, 

because of the opposite direction of propagation of the backscattered waves, they are considered to be Right Circularly 

Polarized (RCP) by the receiving antenna. Therefore, the PP backscattered waves from a sphere are LCP, while the OP 

backscattered waves are negligible. 

The normalized exact backscattered RCS for a perfectly conducting sphere is a Mie series given by 

 

(27) 

where r is the radius of the sphere, k = 2π ⁄ λ, λ, is the wavelength, Jn is the spherical Bessel of the first kind of order n, 

and Hn
(1)

 is the Hankel function of order n, and is given by 

 

(28) 

 

Yn is the spherical Bessel function of the second kind of order n. 

We can specify three regions: 

 the Optical region which corresponds to a large Sphere 

 

(29) 

 the Mie or Resonance region which is oscillatory in nature 

 And the Rayleihg region corresponds to a small Sphere 

 

(30) 

The backscattered RCS for a perfectly conducting sphere is constant in the optical region. For this reason, radar 

designers typically use spheres of known cross sections to experimentally calibrate radar systems. For this purpose, 

spheres are flown attached to balloons. In order to obtain Doppler shift, spheres of known RCS are dropped out of an 

airplane and towed behind the airplane whose velocity is known to the radar. 

An ellipsoid centered at (0,0,0) is defined by the following equation : 

 

(31) 

One widely accepted approximation for the ellipsoid backscattered RCS is given by 

 

(32) 

when a = b, the ellipsoid becomes roll symmetric and the RCS is independant of ϕ and the equation (5.06) is reduced 

to 
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When a = b = c so the equation (32) becomes 
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and the equation (34) defines the backscattered RCS of a sphere. This should be expected, since under the condition 

a = b = c the ellipsoid becomes a sphere. And due to the circular symmetry, the backscattered RCS of a circular flat 

plate has no dependency on ϕ. The RCS just depends only to the aspect angle. And for normal incidence, actually 

zero aspect angle (θ = 0°), the backscattered RCS for a circular flat plate is 
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For non-normal incidence (θ ≠ 0°), two approximations for the circular flat plate backscattered RCS for any linearly 

polarized incident wave are 

 

(36) 

 

(37) 

where k = 2π ⁄ λ, and J1(β) is the first order spherical Bessel function evaluated at β. 

The half cone angle of frustum is given by 

 

(38) 

Define the aspect angle at normal incidence with respect to the frustum's surface (broadside) as θn. Thus, when a 

frustum is illuminated by a radar located at the same side as the cone.s small end, the angle θn is 

 

(39) 

Alternatively, normal incidence occurs at 
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At normal incidence, one approximation for the backscattered RCS of a truncated cone due to a linearly polarized 

incident wave is 
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where λ is the wavelength. Using trigonometric identities, the equation (41) can be reduced to 
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For non-normal incidence, the backscattered RCS due to a linearly polarized incident wave is 
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cone. Again, using trigonometric identities, supposed that the radar illuminates the starting from the large end, the 

equation (43) is reduced to 
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the equation (44) should be modified to 
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(46) 

        (47) 

For a circular cylinder of radius r, then due to roll symmetry, the equations (46) and (47), respectively, reduce to 

 

(48) 

 

(49) 

Consider a perfectly conducting rectangular thin flat plate in the x-y plane. The two sides of the plate are denoted by 

2a and 2b. For a linearly polarized incident wave in the x-z plane, the horizontal and vertical backscattered RCS are, 

respectively, given by4 

 

(50) 

 

(51) 

 

where k = 2π ⁄ λ and 
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(57) 

 

(58) 

 

(59) 

 

(60) 

The equations (50) and (51) are valid and quite accurate for aspect angles 0°≤θ≤80. For aspect angles near 90°, Ross 

obtained by extensive fitting of measured data an empirical expression for the RCS. It is given by 

 

                   (61) 

The backscattered RCS for a perfectly conducting thin rectangular plate for incident waves at any θ, ϕ can be 

approximated by 

          (62) 

The equation (62) is independent of the polarization, and is only valid for aspect angles θ≤20°.  

Consider the triangular flat plate defined by the isosceles triangle. The backscattered RCS can be approximated for 

small aspect angles (θ≤30°) by 
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where α = k asinθcos(ϕ), β = kbsinθsin(ϕ), and A = ab / 2. For waves incident in the plane ϕ = 0, the RCS reduced to 
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                (66) 

and for the incidence ϕ = π/2 

 

(67) 

6. SCATTERING FROM A DIELECTRIC-CAPPED WEDGE 

The geometry of a dielectric-capped wedge is required to find to the field expressions for the problem of scattering 

by a 2-D perfect electric conducting (PEC) wedge capped with a dielectric cylinder. Using the cylindrical 

coordinates system, the excitation due to an electric line current of complex amplitude I0 located at (ρ0, ϕ0) results in 

TM
z
 incident field with the electric field expression given by 

 

(68) 

The problem is divided into three regions, I, II, and III. The field expressions may be assumed to take the following 

forms : 
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while Jv(x) is the Bessel function of order v and argument x and Hv
(2)

 is the Hankel function of the second kind of 

order v and argument x. From Maxwell’s equations, the magnetic field component Hϕ is related to the electric field 

component Ez for a TM
z
 wave by 
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Where the prime indicated derivatives with respect to the full argument of the function. The boundary conditions 

require that the tangential electric field components vanish at the PEC surface. Also, the tangential field components 

should be continuous across the air-dielectric interface and the virtual boundary between region II and III, except for 

the discontinuity of the magnetic field at the source point. Thus, 

 at φ = α; 2π − β 

 

(73) 

 at ρ = a 

 

(74) 

 at ρ = ρ0 

 

(75) 

The current density Je may be given in Fourier series expansion as 
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The boundary condition on the PEC surface is automatically satisfied by the dependence  φ of the electric field 
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(82) 

    

(83) 

   

(84) 

From the equation (81) and (82), we have 
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Multiplying the equation (83) by Hv
(2)

' and the equation (84) by Hv
(2)

, and by subtraction and using the Wronskian of 

the Bessel and Hankel functions, we get 
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(92) 

  

Thus, the Hρ expressions for the three regions are defined become 

  (93) 

In region III, the scattered field may be found as the difference between the total and incident fields. Thus, using Eqs. 

(68) and (69) and considering the far field condition ( ρ → ∞ ) we get 

                (94) 

Note that dn can be written as 
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where 

           (96) 

Substituting the equation (94) into the equation (93), the scattered field f(ϕ) is 
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For plane wave excitation ( ρ0 → ∞ ), the expression in the equations (87) and (88) reduce to 
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where the complex amplitude of the incident plane wave, E0, can be given by 
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                          (99) 

In this case, the field components can be evaluated in regions I and II only. 

If α = β  (reference at bisector); The definition of v reduces to 

 

(100) 

 

and the same expression will hold for the coefficients (with α = β ) 

If  α = 0  (reference at face); the definition of v takes on the form 

 

(101) 

 

 

and the same expression will hold for the coefficients (with α = 0 ) 

If  k1 → ∞  (PEC cap); Fields at region I will vanish, and the coefficients will be given by 

                   (102) 

Note that the expressions of bn and an will yield zero tangential electric field at ρ = a when substituted in the equation 

(69). 

If a → 0 (no cap); the expressions of the coefficients in this case may be obtained by setting k1 = k, or by taking the 

limit as a approaches zero. Thus, 
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(103) 

If  a → 0 and α = β = 0 (semi-infinite PEC plane); In this case, the coefficients in the equation (6.36) become valid 

with the exception that the values of v reduce to n/2. Once, the electric field component Ez in the different regions is 

computed, the corresponding magnetic field component Hϕ can be computed using the equation (6.04) and the 

magnetic field component Hρ may be computed as 

 

(104) 

 

7. Triangular Flat Plate 
 

 
Fig1 : Coordinates for a perfectly conducting isosceles trinagular plate 

 

Consider the triangular flat plate defined by the isosceles triangle as oriented in Figure 1.  

Fig2 shows a plot for the normalized backscattered RCS from a perfectly conducting isosceles triangular flat plate. 
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The MATLAB function noted as "rcs_isosceles.m" which calculates and plots the backscattered RCS of a triangular 

flat plate. 

 

 
 

Fig2 : Backscattered RCS for a perfectly conducting triangular  flat plate, with a = 20cm and b = 75cm 

 

 

CONCLUSON 

He study of radar sections takes a very large place today in the term of target detection and the improvement of radar 

applications. Radar researchers and designers, especially in powerful countries, never cease to improve their 

weapons through in-depth studies of RCS in the face of this threat of world war. 

 

8. REFERENCES 

[1] Jose M. Tamayo, Palau, Pascal De Resseguier "Simulation of Near Field RCS to Reproduce Measurement 

Condition" 

[2] Woobin Kim, Hyeong-Rae Im, Yeong-Hoon Noh, Ic-Pyo Hong, Hyun-Sung Tae, Jeong-Kyu Kim, Jong-Gwan 

Yook "Near-Field to Far-Field RCS Prediction on Arbitrary Scanning Surfaces Based on Spherical Wave Expansion" 

[3] Pofessor A. Manikas "Priciples of Classical and Modern Radar Radar Cross Section (RCS) and Radar Clutter 

(RC)" 

[4] J. A. McEntee "A Technique For Measuring The Scattering Aperture And Absorption Aperture Of An Antenna" 

[5] Levent Sevgi "RCS Measurements" 

[6] Nicolas Asada "A Study of the Effect on Radar Cross Section (RCS) Due To 'Starved Horse Patterns' " 

[7] Marcelo A. S. Miacci, Mirabel C. Rezende "Basics on Radar Cross Section Reduction Measurements of Simple 

and Complex Targets Using Microwave Absorbers" 

[8]Juan M. Rius, Miguel Ferrando, Luis Jofre "High-Frequncy Radar Cross Section (RCS) of Complex Radar 

Targets in Real-Time" 


