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ABSTRACT 
This project aims to develop a real-time anomaly prediction system utilizing wearable sensor data through 

machine learning techniques. Building upon our previous work in Parkinson's disease prediction from gait 

analysis using Hidden Markov Models (HMM), the current project focuses on extending the applicability of 

wearable sensor technology for early detection of anomalies in various contexts. The proposed system leverages 

advanced machine learning algorithms to analyze and interpret data collected from wearable sensors, enabling 

the identification of abnormal patterns indicative of potential health issues or irregular activities. The research 

contributes to the emerging field of health monitoring and anomaly detection using wearable devices, with the 

potential to revolutionize preventive healthcare by providing timely alerts and interventions. The proposed system 

builds upon the limitations of the existing approaches by developing a real-time anomaly prediction framework 

using wearable sensor data. The integration of advanced signal processing techniques and anomaly detection 

algorithms enhances the system's ability to identify abnormal patterns, facilitating early detection of potential 

health issues or irregular activities. The proposed system aims to provide a comprehensive solution for proactive 

health monitoring and timely intervention, addressing the shortcomings of the current state-of-the-art methods. 
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1. INTRODUCTION 

An essential field of focus for behaviour monitoring, with an emphasis on the independent living and wellbeing of 

senior citizens, is real-time anomaly identification from wearable sensor data. With wearable sensors, this 

technology continuously monitors physiological and activity data. Advanced algorithms are then used to discover 

deviations from regular behaviour patterns. Through real-time detection of anomalies, caregivers can take fast 

action to guarantee the well-being and safety of the people they are responsible for. 

With most research focused on retroactive analysis and diagnosis, real-time anomaly prediction using 

wearable sensor data is not given much attention in the current system. The efficacy of current methods in 

proactive health monitoring is limited by their frequent inability to deliver early notifications for suspected 

irregularities. There is a delay in swiftly addressing new health risks due to the dependence on traditional models 

and the lack of real- time prediction systems. Our earlier research on the use of HMM to forecast Parkinson's 

illness has shown the promise of machine learning in gait analysis, providing the groundwork for expanding these 

methods to more extensive anomaly prediction scenarios. 

The proposed system uses wearable sensor data to provide a real-time anomaly prediction framework, 

which expands upon the shortcomings of the previous methods. The new system processes and analyses real-time 

data streams from wearable sensors using a variety of machine learning techniques, drawing on the knowledge 

gained from the Parkinson's disease prediction research. The system's capacity to recognize anomalous patterns is 

improved by the integration of sophisticated signal processing methods and anomaly detection algorithms, which 

makes it easier to spot possible health problems or irregular activity early on. The goal of the proposed system is 

to overcome the inadequacies of the existing state-of-the-art techniques by offering a comprehensive solution for 

proactive health monitoring and prompt intervention. 
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2. LITERATURE SURVEY 

The literature review conducted for the project provides a comprehensive overview of recent advancements in 

speech emotion recognition using machine learning techniques. This review critically assesses the current state of 

research, identifies areas with limitations, and proposes potential solutions. Here, we'll delve deeper into the 

reviewed studies and expand on the central issues and challenges highlighted in the literature. 

Hussain Nizam of Dalian University of Technology had the proposed hybrid end-to- end deep 

anomaly detection framework offers a sophisticated approach to accurately detect anomalies and extremely rare 

events in sensitive IoT streaming data. By leveraging the complementary strengths of CNNs and LSTM-based 

Autoencoders, the framework demonstrates high accuracy, robustness, and real-time processing capabilities, 

making it well- suited for applications requiring timely detection of anomalies and rare events. So, The CNN 

component of the framework is responsible for extracting meaningful features from the raw sensor data. 

Suisan of Towards Data Science used the LSTM that allows the autoencoder to handle long-term 

dependencies and capture subtle changes in the data over time, making it well-suited for anomaly detection tasks 

in time series data like stock prices. It trains an LSTM autoencoder using historical sensor data to capture normal 

patterns and behaviours. This involves preprocessing the sensor data and training the autoencoder to reconstruct 

the input data while minimizing the reconstruction error. And also, implementing online learning techniques to 

update the LSTM autoencoder model continuously as new sensor data becomes available. This allows the model 

to adapt to changes in sensor readings and evolving patterns over time. And continuously feed incoming sensor 

data into the trained LSTM autoencoder model to generate real-time reconstructions. This computes the 

reconstruction error between the original sensor data and the reconstructed data at each time step. 

Li et al. (2017) demonstrated how wearables may be used to monitor physiology and activity simultaneously. 

They created expectations on the start of aggravation of Lyme illness within the ponder by combining the sensor 

data with visit therapeutic estimations. They also noticed an improvement in the participants who were insulin-

resistant and insulin- sensitive through the ponder. For a delayed period of two lengthy times, various devices that 

measured the temperature, heart rate, and SpO2 in addition to other activity-related measures were used. 

Bogu et al. (2021) observed an irregular resting heart rate in the COVID-19 disease state in a related 

investigation. The related step count values were used to determine the resting heart rate. A deep learning method 

based on a Long Short-Term Memory Network-based autoencoder (LAAD) was used. A literature review served 

as the foundation for the data labelling (infectious, non-infectious, and recovery phases). Before creating the 

training set, the aberrant resting heart rate (RHR) was calculated using its distance from baseline. Several data 

augmentation methods were used, which expanded the amount of training data, to prevent overfitting in the deep 

learning model. In 14 people, RHR suggestive of COVID-19 infection was found. 

Heart rate and step counts were utilized in a Mishra et al. (2020) investigation to identify COVID-19. 32 

people with COVID-19 infections were among the more than 5200 participants whose physiology and activity 

data they examined. The study revealed higher resting heart rates than the subjects baseline values. Two methods 

were developed: heart rate over steps anomaly detection (HROS-AD) and resting heart rate difference (RHR-diff), 

with the missing values imputed as zeros. To observe baseline residuals, the initial algorithms foundation was the 

standardization of the resting heart rate over a predetermined period of time. The scan statistic method was used 

to identify the time interval as anomalous. Heart rate and step measurements obtained from InHROS-AD were 

integrated using an elliptic-envelope method based on machine learning. 

 

3. OBJECTIVE AND METHODOLOGY 

This project aims to develop a real-time anomaly prediction system utilizing wearable sensor data through 

machine learning techniques. Building upon our previous work in Parkinson's disease prediction from gait analysis 

using Hidden Markov Models (HMM), the current project focuses on extending the applicability of wearable 

sensor technology for early detection of anomalies in various contexts. The proposed system leverages advanced 

machine learning algorithms to analyse and interpret data collected from wearable sensors, enabling the 

identification of abnormal patterns indicative of potential health issues or irregular activities. 

3.1 Objectives of the Proposed Work 

Wearable Sensor Data Collection: The project begins by selecting appropriate wearable sensors capable of 

capturing physiological signals relevant to the application, such as heart rate, skin temperature, and accelerometer 

readings. Wearable devices like smartwatches or fitness trackers are distributed to participants, who wear them 

continuously throughout the data collection period. Data from the wearable sensors is transmitted wirelessly to a 

central data collection point, such as a smartphone or a cloud-based server. 

Data Preprocessing: Once the sensor data is collected, preprocessing steps are applied to clean and prepare the 



Vol-10 Issue-2 2024                IJARIIE-ISSN(O)-2395-4396 

     

 

22830  ijariie.com 870 

data for analysis. 

 

LSTM Network Model Creation: A Long Short-Term Memory (LSTM) network model is designed to process 

the sequential sensor data and learn patterns over time. The architecture of the LSTM model includes layers of 

LSTM cells followed by dense layers for classification or regression tasks. The model is trained using historical 

sensor data, which includes labelled instances of normal and anomalous behaviour. 

Anomaly Threshold: After training the LSTM network, an anomaly detection threshold is established to 

classify new incoming data as normal or anomalous. This threshold is determined based on statistical analysis of 

the model's prediction errors on the training data or through domain-specific knowledge. Data instances that 

deviate significantly from the expected patterns learned by the model are classified as anomalies. 

Alerting System: An alerting system is implemented to notify relevant stakeholders in real-time when 

anomalies are detected. When the LSTM model identifies a data instance as anomalous, an alert is triggered, and 

notifications are sent to designated recipients via email, SMS, or push notifications. The alerting system may 

include escalation procedures to ensure timely responses to detected anomalies. 

 

GUI Visualization: Summary of real-time data streams from wearable sensors. Status indicator showing 

whether the disease/anomaly is detected or not. Quick access to detailed visualizations and alerts. 

 

3.2 PROPOSED METHODOLOGY 

Data Preparation (Training File): 

The initial step involves loading and preparing the dataset ('gaitdataset.csv') using the Pandas library. The 

dataset is then split into features (X) and labels (y). The project employs the Hidden Markov Model (HMM) from 

the hmmlearn library for machine learning. The HMM is configured with parameters such as the number of 

components, covariance type, and the number of iterations for training. The model is then trained on the input 

data, and the trained model is saved using the Joblib library. Various model parameters and statistics, such as the 

number of components, covariance type, and accuracy score, are printed for evaluation. 

Flask App Setup (Prediction Flask App File): 

The Flask web application is set up to facilitate user interaction for predicting anomalies based on new 

input. The app loads the pre-trained HMM model using Joblib. The home route renders an HTML template, 

providing a user interface with background images. The '/result' route handles the form submission, retrieving user 

input for features such as age, height, weight, etc. The trained HMM model is then used to predict the label for the 

new input. Depending on the predicted label (Control Object or Parkinson Disease), the result is printed to the 

console, and the result.html template is rendered, displaying the input features and the predicted label. 

Web Interface (HTML Templates): 

The project includes HTML templates for the web interface, facilitating user input and displaying results. 

The 'pdanalysis.html' template provides the initial interface with background images, while the 'result.html' 

template displays the result, including the input features and the predicted label. 

User Input Processing (Flask App): 

The Flask app processes user input obtained through a form submission on the web interface. The input 

values for features like age, height, weight, etc., are retrieved and used to create a new input array. The pre-trained 

HMM model is loaded, and the new input  is passed to the model for prediction. The predicted label (Control 

Object or Parkinson Disease) is then printed to the console and passed to the 'result.html' template for display. 

Result Display (HTML Templates and Flask App): 

The 'result.html' template is responsible for rendering the result page, displaying the input features and 

the predicted label. The Flask app handles the logic for determining the predicted label and passing it to the 

template for dynamic content rendering. The result page also includes background images for a visually appealing 

interface. 

Server Configuration and Execution: 

The Flask app is configured to run on the local server using app.run(debug=True). This enables the 

application to be accessed through a web browser. The server also includes a function to add headers for caching 

and compatibility. 
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3.3 BLOCK DIAGRAM 
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3.4 FLASK FRAMEWORK INTEGRATION 

 

Flask, a web framework, plays a crucial role in this project for various reasons: 

 

Web Development: Flask simplifies web application creation, forming the basis for the user interface (UI) 

and user interactions. 

User-Friendly Interface: It aids in designing a user-friendly interface, making web pages, forms, and 

navigation intuitive for users. 

Dynamic Web Pages: Flask supports dynamic web pages, enabling real-time data presentation, user input, and 

immediate prediction and metric display. 

Routing: Flask's routing mechanism defines URLs and associates them with Python functions, creating distinct 

sections for login, data upload, prediction, and analysis. 

Python Integration: Its alignment with Python allows seamless data transfer between the frontend and 

backend components. 

Efficient Data Handling: Flask streamlines data handling, crucial for tasks like dataset uploads, symptom data 

transmission, and metric display. 

Security: Flask offers robust security features, essential for safeguarding sensitive healthcare data and user 

privacy. 

Scalability: It suits both small-scale and large-scale applications, accommodating project growth. 

Community and Ecosystem: Flask has an active developer community and a rich ecosystem, providing pre-

built components for enhanced functionality. 

Deployment Flexibility: It can be deployed on various platforms, meeting specific requirements, ensuring 

adaptability and ease of use. 

In summary, Flask is indispensable for UI development, data exchange, security, and user interaction in this 

project. Its adaptability, Python integration, and community support make it invaluable for creating a 

functional and user-centric web application. 

 

 

4. PROPOSED WORK MODULES 

 

4.1 MODULES IN TRAINING AND TESTING PYTHON FILE: 

 

1. Data Loading and Preprocessing: 

The project begins with the loading and preprocessing of the dataset using the Pandas library. The dataset, 

named 'gaitdataset.csv,' is read into a Pandas DataFrame. The features (X) and labels (y) are then separated, 

where X represents the sensor data, and y contains the corresponding labels. This step ensures the data is in 

a suitable format for training the machine learning model. 

2. Model Selection and Training: 

The Hidden Markov Model (HMM) is selected as the machine learning algorithm for this project. The HMM 

is implemented from the hmmlearn library. Key parameters, such as the number of components, covariance 

type, and the number of iterations, are set to configure the HMM. The model is then trained on the prepared 

dataset (X) using the fit method. This step involves the algorithm learning the underlying patterns and 

structures within the wearable sensor data. 

3. Model Evaluation and Saving: 

After training, the model's accuracy on the training data is computed using the score method, providing an 

indication of how well the model fits the given dataset. The trained HMM model is saved using the Joblib 

library, ensuring that the model can be reused without the need for retraining. Additionally, various model 

parameters, such as the number of components, covariance type, and means, covariances, and transition 

probabilities, are printed for inspection and evaluation. 
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1. Loading Models: 

2. Configuring Flask: 

3. Home Route: 

4. Result Route: 

4. Prediction on Training Data: 

The trained HMM model is then used to predict hidden states and sample probabilities for the training 

dataset. The predicted hidden states represent the underlying states in the data sequence, while sample 

probabilities indicate the likelihood of each sample belonging to a particular state. These predictions offer 

insights into the patterns and dynamics captured by the HMM during the training phase. 

5. Prediction on New Input: 

The model is tested on new input data, simulating real-world scenarios where wearable sensor data is 

collected in real-time. A sample input array is created, representing new data points for features such as age, 

height, weight, etc. The trained HMM model predicts the label for the new input, indicating whether it 

corresponds to a control object or a case of Parkinson's disease. 

4.2 MODULES IN APPLICATION FILE: 

 

This portion uses the joblib package to load the Hidden Markov Model (HMM) that has already been 

trained. Using historical sensor data, the HMM model was previously trained to identify abnormalities 

linked to Parkinson's disease. The trained HMM model is loaded by calling the joblib.load() function 

on the file "hmm_model.joblib".This stage makes sure that the trained model is easily accessible for 

Parkinson's disease prediction in real-time using user- supplied input data. 

 

Flask is a Python web framework that is lightweight and designed to manage HTTP requests and 

responses. Within the web application, routes are specified for various destinations to make navigation 

easier.The Flask application object (app) is created using the Flask() constructor. Using the 

@app.route() decorator, routes are defined.Flask facilitates the smooth integration with machine 

learning models for real-time prediction and offers the framework for developing online apps. 

 

The web application's home page (pdanalysis.html) is rendered via the home route. It functions as the 

application's landing page for users. The HTML template (pdanalysis.html) is rendered using the 

render_template() function. The template receives paths to background images (homeimg and bgimg) 

in order to render dynamic content. This path gives consumers a way to go to other application 

parts, engage with the program, and enter data for  predictions. 

 

Form submissions from the home page are handled by the result route. The user-submitted input data is 

processed, the pre-trained HMM model is used to do real-time prediction, and the predicted conclusion 

is rendered on the result page (result.html). The request.form[] method is used to extract form data 

(Age, Height, Weight, etc.) that users provide. The trained HMM model receives the input data and 

makes predictions. The render_template() function renders the result page based on the predicted label 

(Control Object or Parkinson Disease). Using user-supplied input data, this method enables real-time 

prediction of Parkinson's disease. It increases user involvement and gives quick input on the 

anticipated result. 

5.  

The web application's cache settings are configured in this part to guarantee peak performance and 

resource management. A function that appends headers containing caching directives to HTTP 

responses is defined using the @app.after_request decorator. It makes that API endpoints aren't cached 

so consumers aren't served outdated information. By increasing the web application's responsiveness 

and efficiency, caching optimization enhances the user experience overall. 

6.  

This section ensures that the Flask application is started only when the script is executed directly. It 

Caching Configuration: 

Running the Application: 
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specifies the debug mode (debug=True), enabling real-time debugging and error handling during 

development. The if  name  == ' main ': block checks if the script is executed as the main program. 

If so, the Flask application is started using the app.run() method. Running the application in debug 

mode facilitates rapid development and testing, allowing developers to identify and resolve issues 

promptly. 

 

5.RESULTS AND DISCUSSION 

 

The study conducts a thorough examination of gait patterns to predict the onset of Parkinson's disease. Utilizing 

data gathered from wearable sensors, meticulous preparation and cleansing of datasets were carried out to ensure 

the integrity of the information used for analysis. Through rigorous model training, the Hidden Markov Model 

(HMM) underwent optimization, with parameters finely tuned to capture subtle gait characteristics indicative of 

Parkinson's disease. Evaluation metrics, such as accuracy, sensitivity, specificity, precision, recall, and AUC-

ROC, were meticulously applied to assess the model's effectiveness in both anomaly detection and disease 

prediction. The study's findings emphasize the HMM's robust performance in identifying anomalies within gait 

data, highlighting its potential in detecting nuanced deviations that may signal early Parkinson's disease 

symptoms. Furthermore, the model demonstrated significant accuracy in forecasting the onset of Parkinson's 

disease through gait analysis, suggesting its utility as a diagnostic aid in clinical settings. Real-time performance 

metrics, including latency and computational efficiency, were thoroughly evaluated, affirming the system's 

viability for practical deployment. In the discussion of results, the study places its findings in the broader context 

of gait analysis and Parkinson's disease research, recognizing the strengths and limitations inherent in the 

proposed methodology. Insights derived from the study carry valuable implications for future research initiatives, 

stressing the importance of further refining and validating the model across diverse populations and environments. 

Significantly, the study underscores the clinical relevance of its findings,envisioning a future where wearable 

sensor technology and machine learning algorithms synergistically enhance diagnostic capabilities, ultimately 

fostering improved patient outcomes and quality of life. The Flask web application is set up to facilitate user 

interaction for predicting anomalies based on new input. The Flask app handles the logic for determining the 

predicted label and passing it to the template for dynamic content rendering. The app loads the pre-trained HMM 

model using Joblib. The home route renders an HTML template, providing a user interface with background 

images. The '/result' route handles the form submission, retrieving user input for features such as age, height, 

weight, etc. 
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The trained HMM model predicts the label for the new input, indicating whether it corresponds to a 

control object or a case of Parkinson's disease. Depending on the predicted label (Control Object or 

Parkinson Disease), the result is printed to the console, and the result.html template is rendered, 

displaying the input features and the predicted label. 


