
Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5238 www.ijariie.com 852

Reliability of Software Fault Prediction using Data

Mining and Fuzzy Logic

Vaibhav Agrawal

Amity University Madhya Pradesh, Gwalior

vagrawal@gwa.amity.edu

Abstract: In this paper we proposed unsupervised software fault prediction approach.

Software fault prediction approach used to improve the reliability of software. The main

contribution of this paper is the development of an automated way of assigning fault-

propensity labels to the unit and eliminates the subjective expert opinion. The aim of

proposed approach is to find out that whether metrics present in the early lifecycle (i.e.

requirement measures), measures available in the behind lifecycle (i.e. code metrics) may be

select to identify fault prone modules by using clustering techniques or classification

Technique and identify which Technique gives better result.

Keywords: fault prediction; reliability; verification server; classification algorithm and

analysis.

I. INTRODUCTION

Software faults can be categorized into two parts. Faults can be classified according to their

phase of creation or events, system boundaries (inner or outer), domain (hardware or

software), phenomenological cause, intent, and persevering. The conversation below is

concentrate on software fault classification based on their recovery strategies. According to

Gray [1] software faults classified into Bohr bugs and Heisenbugs. Software fault tolerance

techniques are planning to permit a system to tolerate software faults that remain in the

system after its development. Software fault tolerance methods are employed through the

procurement or development of the software. When any fault occurs, these methods provide

process to the software system to prevent system failure from occurring. Software fault

tolerance methods given security against fallacy in translating the requirements and

algorithms into a programming language but do not give explicit protection against fallacy in

specifying the requirements. Software fault tolerance techniques are using in the aerospace,

nuclear power, health care, broadcasting and transportation industries and many more.

Software fault tolerance provides service observe with the relevant specification in spite of

faults by normally using single version software methods multiple version software methods,

or many data representation methods. Single Version Software Environment: Monitoring

methods, atomicity of actions, decision verification, and error handling are used to relatively

tolerate software implementation faults. Many Version Software Environments: Design

diverse methods are used in a multiple version (or variant) software environment and make a

use of functionally equivalents yet independently design software versions to provide

tolerance to software design faults. Examples of such techniques cover recovery blocks

(RcB), N-version programming (NVP), and self checking programming (NSCP). Many Data

Representation Environment: Data diverse methods are used in a multiple data representation

mailto:vagrawal@gwa.amity.edu

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5238 www.ijariie.com 853

environment and utilize distinct representations of input data to supply tolerance to software

design faults. Examples of such methods include retry blocks (RTB), N-copy programming

(NCP) and N-self checking Programming. It this research we studied that the redundancy

alone is not sufficient for design of software faults tolerance, so some forms of diversity must

accompany the redundancy.

II. RELATED WORK

[5] Provide the basic idea of clustering and they used metric values of JEdit open source

software. In this research, they compose a rules for group of software module is either faulty

on non-fault and empirically validation is performed. The results are determined in terms of

precise of prediction, probability of detection and probability of false alarms. In the end, they

finish that open source software systems are used. This model is setup using KMeans based

methods for groups of software modules into faulty or non-faulty module [5].

III. DECISION TREE AND FUZZY LOGIC

Ajeet Kumar Pandey and Neeraj [7] observe that faults are guss using data mining techniques

and fuzzy logic. Decision tree is composed using ID3 algorithm Decision tree is a flowchart

like tree structure, where each inner node stand for a test on an attribute, each node represents

an result of the test and each leaf node occupancy a class label [1]. The data gained from

decision tree and that information is converted into fuzzy rules. They suggest Fuzzy Inference

System that system has input as software metrics and output is the degree of fault susceptible

that decides whether module is fault prone or not. Focus of this research is to help the

software manager to better the reliability and excellence of software system [7].

IV.PROPOSED WORK

We are modulating the, validation and verification of real-time scheme. It is suitable for

systems that can be modelled as a group of non-deterministic processes with finite control

structure and real-valued clocks (i.e. timed automata), conversation through channels and (or)

shared data structures. We consists main feature, a graphical user interface (GUI), a

verification server, and a command line tool. In simulation, the server is used to compute

successor states. In this paper we have applied classification algorithm on faculty data and

determine result using MATLAB on every step after normalization and after selection. All

the result shown in below figures.

V.DATASET

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5238 www.ijariie.com 854

Fig.1 Representation of faculty data in dataset .

Fig.2 Representation of faculty data in dataset after normalization.

-

Fig. 3 Representation of faculty data in dataset after selection.

VI. APPLY CLASSIFICATION ALGORITHM

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5238 www.ijariie.com 855

VII. COMPARISON GRAPH

In this graph, we are comparing the number of instances in which software fails with the

no of instances when it didn’t fails. By this calculation we are able to predict that how

many times it fails and how many times it didn’t fails. We are taking different number of

attributes by which we can predict the failure like error in coding, run time error software

bug etc.

Vol-3 Issue-3 2017 IJARIIE-ISSN(O)-2395-4396

5238 www.ijariie.com 856

VIII.CONCLUSION

In this paper we proposed an unsupervised software fault prediction approach. Experiments

revealed that unsupervised software fault prediction can be fully automatic and useful results

can be produced by using X-means clustering with software metrics edges. The main focus of

this research is the development of an automated way of assigning fault-proneness labels to

the modules and the delete the subjective expert opinion. There is no heuristic step in our

model as needed in k-means clustering based fault prediction approaches.

REFERENCES

[1] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn defect predictors”,

IEEE Transactions on Software Engineering, vol. 32, no.1, 2013, pp. 2-13.

[2] N. Seliya, T. M. Khoshgoftaar, “Software quality estimation with limited fault data: a semi-supervised

learning perspective”, Software Quality Journal, vol. 15, no. 3, 2011, pp. 327-344.

[3] C. Catal, B. Diri, “Investigating the effect of dataset size, metrics set, and feature selection techniques on

software fault prediction problem”, Information Sciences, vol. 179, no. 8, pp. 1040-1058, 2009.

[4] N. Seliya, “Software quality analysis with limited prior knowledge of faults”, Graduate Seminar, Wayne

State University, Department of Computer Science, 2006

[5] C. Catal, B. Diri, “A systematic review of software fault predictions studies”, Expert Systems with

Applications, vol. 36, no.4, pp.7346-7354, 2009.

[6] S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Unsupervised learning for expert-based software quality

estimation”, Proc. of the 8th Intl.Symp. On High Assurance Systems Eng., Tampa, FL, 2004, pp.149-155.

[7] C. Catal, U. Sevim, B. Diri, “Clustering and metrics thresholds based software fault prediction of unlabeled

program modules”, 6th Int’l.Conference on Information Technology: New Generations, IEEE Computer

Society, Las Vegas, Nevada, 2009.

[8] N. Seliya, T. M. Khoshgoftaar, “Software quality analysis of unlabeled program modules with semi-

supervised clustering”, IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, vol.

37, no. 2, 2007, pp. 201-211.

