
Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 963

SECURE DATA AUDITING AND

DEDUPLICATING DATA WITH

MULTIUSER CLOUD ENVIRONMENT

S.Ghogare
1
, Prof.S.K.Sonkar

2

1
 M.E., Computer Engineering Department, Maharashtra, India

2
Assistant Professor, Computer Engineering Department, Maharashtra, India

ABSTRACT
Nowadays, users are more attracted towards outsourcing data to cloud server due to cheap storage cost, efficient

management, maintenance, data security etc. Preferably, user outsources their data into encrypted format for

privacy concern. There may have chances of de-duplication if similar file is available in cloud storage. Data

duplication is one of the important issue which affects on cloud storage. We proposed two secure approaches

namely, SecCloud and SecCloud+ for secured auditing and de-duplication in cloud server. On loud server, there

may have chances of duplicate data which affects on the management of data. The proposed system check for

duplicate files on cloud server before uploading file on cloud by using file tag generation and file block uploading

approaches. For verification of data `auditor’ is introduced which verifies the data integrity. There are several

features introduced in proposed system such as, data encryption, data duplication check and periodic verification of

data. For better efficiency map-reduce functionality is used. As a part of contribution, system is design and

developed with multiuser environment. User can share files with the other users which is uploaded by them to cloud

server. With an experimental set up proposed system proves an efficiency of system in terms of Data uploading, tag

generation and deduplication check time of execution.

Keyword: Auditing, de-duplication, Multiuser System, map-reduce

1. INTRODUCTION

Users take advantage of the services of cloud server for their heavy data management. Cloud deals with the policy of

``pay-as-you-use” but it may causes to loss of storage efficiency if same content is repeatedly added to cloud server.

Also user has to pay for more same content. In the recent survey of EMC it is found that 75 to 78 percent of data on

cloud is having duplicate copies. Hence de-duplication check is necessary. But it is not so secure other way round.

In case of user uploads data and he is about to know that same data is shared already then it will leak major private

and sensitive data. Hence there must be robust system that smartly manages data de-duplication [2]. There must be a

system can easily manage data de-duplication. There are several existing systems are available which manages the

data but that are not more secured. To manage sensitive data leakages PoW is the proof of ownership protocol is

used [3]. In proposed system there are three entities such as, data owner who wish to outsource their data to cloud

server, second entity is cloud server which stores and manages the user uploaded data and the third is data auditor

which verifies the integrity of user uploaded data. The proposed system works in distributed manners. At client side

file uploading protocol is carried out which checks whether if particular file is already stored at cloud or not. PoW

protocol is used between client and cloud entity. Data auditor does not have storage facility in it but it verifies status

of data integrity on periodic basis if client assigns the permission for it. If data owner uploads the data on cloud via

auditor then auditor provided receipt to the client. When user uploaded file come to auditor, it generates the tags of

file and then it is submitted to the cloud server. There are three phases included in the task of file upload such as,

PoW protocol is run between cloud and client. In second phase, client uploads file through auditor and in third phase

auditor generate file tags and upload file along with tags to the cloud. After file uploading, data integrity auditing

protocol is also run when user wants to check the integrity status of own data on cloud. For integrity verification,

integrity protocol is used which verifies data proofs provided by the cloud. For proof verification, auditor sends the

challenge message to cloud server. Cloud response to auditor with proof which is generated by using file content and

file tags and try to prove that data integrity. Proof is true, if client / auditors end based on same file tags and file

content. There are two objectives of proposed system such as,

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 964

[1] Data auditing for integrity purpose

[2] De-duplication checking with secured way

As part of contribution, system is design as multiuser environment, in which multiple users can share and download

files from cloud server. In this part owner share particular file with user with access rights. Based on the access

rights user can read, write or update particular shared document. User can upload his own file and share with other

user. In this case he treats as owner by the system. This approach is most cost effective because if we consider the

data uploading protocol then based on file tags proof is generated and based on file tags it is verified hence

minimum bandwidth for data transaction is used. Also data integrity checking is required minimum bandwidth as

proofs and verification messages are summarized one and transaction with minimum bandwidth is possible. Along

with this as part of contribution we use multi-user system. This is also cost effective module as existing protocols

and phases are used in it. Hence all features are extended and new functionality of sharing data is added. This

sharing is also having some basic data entries and do not consume so much bandwidth. Hence, it is cost effective

and extended one.

2. RELATED WORK

Review of literature focused on some previously exist secure data auditing and de-duplication processes / techniques

by considering their advantages, disadvantages and features. Following is the summary of the literature study and

basic analysis is briefed.

First we focused on the techniques or papers having details about out sourced data integrity auditing mechanism.

J. Li, X. Chen, M. Li, et al [2], proposed Dekey. It is an efficient and reliable convergent key management scheme

for secure deduplication. It applies deduplication among convergent keys and distributes convergent key shares

across multiple key servers, while preserving semantic security of convergent keys and confidentiality of outsourced

data. They implemented Dekey using the Ramp secret sharing scheme and demonstrate that it incurs small

encoding/decoding overhead compared to the network transmission overhead in the regular upload/download

operations.

S. Halevi, et al [3], put forward the notion of proof-of-ownership, by which a client can prove to a server that it has a

copy of a file without actually sending it. This allows to counter attacks on file-deduplication systems where the

attacker obtains a “short summary” of the file and uses it to fool the server into thinking that the attacker owns the

entire file. We gave three definitions for security in this setting and three matching protocols, the last of which is

very practical.

R. Burns, Ateniese, et al. [4] discussed PDP solution as far as data integrity checking by auditor to the cloud in

concern. Uploaded file having n-blocks are verified. Packet Data Protocol is the protocol that verifies that the cloud

storage return a file consisting „n‟-blocks. . In [5], author Burnus and Ateniese uses Packet Data Protocol model for

distant data checking. End user who outsourced the data to the cloud can audit or verify the owned data present on

semi-trusted cloud without downloading it. It simply generates the proofs about the ownership by randomly

sampling the set of file blocks. Hence it is cost effective as file ownership verification is done with minimum

bandwidth. In [6] it was proposed to designed simple and secure Packet Data Protocol. This protocol is deal with

cryptography having symmetric key. This protocol is not suited for third party verification. Mentioned protocol

supports the dynamic outsourcing of data in cost effective manner. It can suitable for more real world approach.

Same kind of work is extended in [7], it is contributed by Dr. K. Manivannan and Dr. T. Nalini, The main motto is

to stop data revealing by un-trusted service providers when the data owner distributes their data entries with an error

recovery. The distributed scheme supports dynamic data integrity, block updating when block delete and append is

implemented. Author aim to reduce the cost of dynamic updates with trusted data transaction innovations. C. Chris,

Charalampos Papamanthou et al [8], extend previous work towards DPDP i.e., dynamic provable data possession.

They utilized a new version of dictionary based on rank information. In their proposed work they also use rank

based RSA-tree to implement DPDP-II with higher probability. They utilized a new version of dictionary based on

rank information. In their proposed work they also use rank based RSA-tree to implement DPDP-II with higher

probability. In [9], O. Rahamathunisa Begam, T. Manjula et al. introduced PDP for ensuring data integrity in

outsourcing of data. The construction of PDP scheme is more efficient as it is implemented in distributed format. It

is based on homomorphic verifiable response as well hash index for cooperative PDP scheme to support for dynamic

scalability on multiple server storage.

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 965

Proof of Retrievability is also the part of data integrity hence literature survey is carried for it also. POR i.e. proof of

retrievability system [10], prove to the verifier that client actually storing all clients‟ data. It gives the complete

proof of security arbitrary adversaries in the strongest model. A cryptographic system permits users of outsourced

storage service to audit that their data is still available and ready for retrieval if needed. Qian Wang, Cong Wang, Jin

Li, et al [11], proposed data security model to enable third party auditor to evaluate the quality of service from

independent and objective point of view. Author explores the problem of to provide the public verifiability and

dynamic data integrity checking. A POR scheme in [12], required constant number of communication bits per

verification and 1/s storage overhead. An authenticated file system is designed to outsource as enterprise class file

system to the cloud side. M. Azraoui, K. Elkhiyaoui et al. discussed about POR which integrates the use of

randomly produced watchdog with the lightweight privacy preserving word search strategy to gain high

retrievability assurance [13].

Following literature survey is carried out for de-duplication also.

A] PoW Proofs of Ownership

Proof of ownership is concept of forward notion by which a user can prove to server that it has copy of the file

without sending actual file. It is counter attack on de-duplication of file system in which attacker obtains short

overview of the file and utilized it as, to make fool the server that thinking the attacker owns the complete file. CDN

attack described in this paper is not much strong as it is convincible hope for [14]. There are several PoW

approaches based on the Merkel-hash tree concept. It enables the secure de-duplication at client side and addresses

the high entropy case. The Markel hash tree and PoW composed solution can be implementable in small sections.

But the Markel hash tree is twice expensive than the SHA256 on the same file. An improved s-PoW is an extreme

simplicity model which required a very small room optimization. Hash is required for by server due to independent

identification of a file from already stored challenge seed and also to compute the response from client. In this

setting, a cryptographic property of hash does not strictly require.

B] Techniques for confidentiality of de-duplicated data

Data de-duplication techniques for private data storage is introduced by W.Keong Ng, Y. Wen et al. in [15]. De-

duplication of private data allows client to prove to the server side that who hold the string of the data that he or she

is the owner of that data without revealing further information at server side. Secure de-duplication protocol based

on the framework assuming that hidden function is collision resilient. A distribute file system known as, Farsite is

introduced in [16]. It provides the security and reliability of data by storing encrypted replicas of individual files on

different desktop. The replicas are stored in free space may caused file duplication. Cryptosystem enable to identify

identical file to integrate even that encrypted with different keys. MLE [17] is Message Locked Encryption

technique. In this encryption and decryption key is derives itself from the message. Another is IBE scheme is

discussed in [18], to define ciphertext chosen security for an identity based system.

Customer always encrypt their data before upload it on cloud due to the reason of ranging personal privacy. To

addressed this problem a key server in introduced in[1] called as, SecCloud with SecCloud+ schema. Both schema

supports for integrity auditing and secure de-duplication. It introduced an auditing entity with the maintainance of

MapReduced cloud. In secCloud, client‟s generate data tags before uploading data on cloud for provide better data

integrity auditing whereas, SecCloud+ is motivated from the procedure of encryption of data before uploading it on

cloud and enable integrity auditing and secured data de-duplication on encrypted data.

3. PROBLEM DEFINITION

To design and develop “a secured data de-duplication & integrity auditing system”

4. PROPOSED SYSTEM

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 966

Fig -1: System Architecture

Fig -1 represents three modules of proposed system such as, user, data, auditor and SecCloud. Respective working

of each module is given as below:

1. User:

1. Select file

2. Encrypt file: File is encrypted using convergent key.

3. Upload encrypted file on secCloud.

4. Send request secCloud for file download.

5. Download or retrieve file from secCloud using hash code.

6. With the help of keys decrypt file and save it.

2. Data Auditor:

1. Save hash code values.

2. Verify user uploaded files using PoW protocol.

3. Preserve metadata for integrity checking.

3. SecCloud Server:

1. Save user upload file into block format.

2. To enable secure client-side deduplication construct Merkle hash tree.

3. Recover data.

A. Methodology for File Upload:

1. Register user data on SecCloud

2. User Login on SecCloud

3. SecCloud return the identification token T to the user

4. User selects the file to upload and add the group members with whom the file will get shared.

5. File tag generation at user end using SHA-1

6. Send tags to Auditor using HTTP connection

7. Auditor checks privileges of user

If access Privilege Check passes then system will allow deduplication check else gives error message

In deduplication check, it matches the file tag with existing file tags

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 967

Case I: If tag matches run proof of ownership (PoW) and share link with other users

Case II: If no file tag matches then it will check deduplication at block level Generate file blocks

1. Generate block hash code

2. Send block hash code to Auditor using HTTP connection

Case I: If Partial Duplication found:

1. It runs proof of ownership for partial no of blocks for new blocks generate convergent key and return token

+key + block matching file information to the user.

2. User encrypts unmatched block data using convergent key Upload token+encrypted data and file info to

SECCLOUD.

3. Auditor saves the token Run proof of ownership Share link with other users

Case II: If no duplication found

1. Generate convergent key and return token +key User encrypt file block data using convergent key & AES

algorithm.

2. Upload token +encrypted data to SEC-CLOUD Auditor saves the token.

3. Run proof of ownership.

4. Share link with other users.

5. Cloud generates MR-MHT for file and uploads metadata to auditor.

6. Auditor saves metadata

B. Methodology for File Download:

1. Register user data on Auditor

2. User Login on Auditor

3. Auditor return the identification token T to the user

4. User Ask for file to download to Auditor

5. Auditor checks the privileges of user.

6. If user has privileges it returns file info + decryption key to the user

7. User sends file info and token to SECCLOUD

8. SECCLOUD verifies the token and return file blocks to the user

9. User decrypts the block using AES decryption algorithm and generates the original file

C. Data Verification:

1. Verification request and send auditor

2. User generates generate challenge message & send to cloud

3. Cloud read the block data & generate MR-MHT using MR-MHT tree

4. Generate metadata for challenge message & send to Auditor

5. Auditor verifies the proof by matching generated proof with saved metadata

6. Notify user for verification result

5. ALGORITHMS

5.1 AES Algorithm:

Input:

Plain text message m in Byte [] , Key k

Output:

Cipher text message in byte []

Processing:

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 968

1. Define 4 * 4 state array

2. Define constant Nr = 4, R=16

3. Copy m in state[]

4. Add each byte of state[] to key k using ⊕

5. For Nr-1 rounds

Replace every byte in state[] with new value using lookup table

Shift last 3 rows of state[] upside cyclically

Combine last 4 columns of state[]

Add each byte of state[] to key k using ⊕

end For

6. Shift last 3 rows of state[] upside cyclically

7. Add each byte of state[] to key k using ⊕

8. Copy State[] to output[]

5.2. AES Decryption:

Input: Cipher text message C in byte [], Key k

Output: Plain text message m in Byte []

Processing:

1. Define 4 * 4 state array

2. Define constant Nr = 4, R=16 ,

3. Copy C in state[]

4. Add each byte of state[] to key k using ⊕

5. For Nr-1 rounds Inverse Replace every byte in state[] with new value using lookup table Inverse

Shift last 3 rows of state[] downside cyclically combine last 4 columns of state[] Add each byte of

state[] to key k using L end For

6. Inverse Shift last 3 rows of state[] down word cyclically

7. Inverse Add each byte of state[] to key k using ⊕

8. Copy State[] to output[]

5.3 SHA-1 algorithm

Input:

h0 = 0x67452301

h1 = 0xEFCDAB89

h2 = 0x98BADCFE

h3 = 0x10325476

h4 = 0xC3D2E1F0

ml = message length in bits (always a multiple of the number of bits in a character).

Processing:

1. Append the bit '1' to the message e.g. by adding 0x80 if message length is a multiple of 8 bits.

2. Append 0 to generate mod 512 value

3. Process the message in successive 512-bit chunks:

 for each chunk

 Break chunk into sixteen 32-bit big-endian words w[i]

 4. Extend the sixteen 32-bit words into eighty 32-bit words:

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 969

 for i from 16 to 79

 w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) leftrotate 1

 5. Initialize hash value for this chunk:

 a = h0,b = h1,c = h2,d = h3,e = h4

 6. Apply Main loop with 80 rounds

 For 1
st
 19 round perform

 f = (b and c) or ((not b) and d)

 k = 0x5A827999

 For 20 to 39 round perform

 f = b xor c xor d

 k = 0x6ED9EBA1

 For 40 to 59 round perform

 f = (b and c) or (b and d) or (c and d)

 k = 0x8F1BBCDC

 For 60 to 79 round perform

 f = b xor c xor d

 k = 0xCA62C1D6

 7. Update hash value

 temp = (a leftrotate 5) + f + e + k + w[i]

 e = d

 d = c

 c = b leftrotate 30

 b = a

 a = temp

 8. Add this chunk's hash to generate cumulative sum for h0 to h4 for a, b, c, d, e

 9. Produce the final hash value (big-endian) as a 160-bit number:

hh = (h0 leftshift 128) or (h1 leftshift 96) or (h2 leftshift 64) or (h3 leftshift 32) or h4

Output: Hash Value hh

6. MATHEMATICAL MODEL
System S can be defined as:

S = {U, S, A, K}

Where,

1. U= {UI, UF ,UO } is user

UI = {UI1, UI2, UI3, UI4,

UI5}, A set of user input From

User

UI1 = Registration Details of User

UI2 = Login Details of User

UI3 = File

UI4 = Folder to save file

UI5= Request for Auditing

UF = {UF1, UF2, UF3, UF4,

UF5, UF6, UF7, UF8, UF9,

UF10, UF11, UF12,

UF13,UF14}, A set of

UF1 = Registration

UF2 = Login

UF3 = Generate File Blocks

https://en.wikipedia.org/wiki/Circular_shift

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 970

Function UF4 = Generate Hash Value

UF5 = Upload Hash Value

CCF6 = Generate Convergent Keys

UF7 = Upload Key To Key Server

UF8 = Encrypt File Blocks

UF9 = Upload File Blocks To Cloud Server

UF10 = Call Auditor For Data Auditing

UF11 = Download File Blocks

UF12 = Download Keys

UF13 = Decrypt File Blocks

UF14 = Save File

UO ={UO1, UO2, UO3}, A set

Of Output

UO1 = Success Note

UO2 = Downloaded file

UO3 = Audit Report

2. CS = {SI, SF, SO} is A Seccloud Server

SI = {SI1, SI2, SI3, SI4}, A set

of Input

SI1 = Encrypted File

SI2 = Download Request

SI3 = Challenge Message

SI4 = Regenerating Codes

SF = { SF1, SF2, SF3, SF4,

SF5, SF6 }, A set Of Function

SF1 = Save Blocks

SF2 = Generate Merkel Hash Tree

SF3 = Generate Metadata

SF4 = Generate Proof

SF5 = Download File

SF6 = Generate Data from Codes

SO ={ SO1, SO2,SO3,SO4 },

A set Of Output

SO1 = Success/ Failure Note

SO2 = Metadata

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 971

SO3 = Blocks For Downloading

SO4 = Proof

3. A = {AI, AF, AO} is A Cloud Service Auditor

AI = {AI1,AI2,AI3,AI4}, A set

of Input

AI1 = User Details

AI2 = User File Metadata

AI3 = Verification Request

AI4 = Proof Of files

AF = {AG1,

AF2,AF3,AF4,AF5}, A set Of

Function

AF1 = Save User Details

AF2 = Save Metadata

AF3 = Generate Challenge Message

AF4 = Verify Proof

AF5 = Generate Audit Report

AO ={AO1,AO2 }, A set Of

Output

AO1= Challenge Message

AO2 =Verification Result

4.KS = {KI, KF, KO } is A Key Server

KSI = {KSI1, KSI2, KSI3}, A

set of Input

KSI1 = User Details

KSI2= Key

KSI3 = Hash code

KSF = {KSF1, KSF2, KSF3,

KSF4, KSF5}, A set Of

Function

KSF1 = File Access Rights

KSF2 = Save user details

KSF3 = Save aggregate Key

KSF4 = Save Hash value

KSF5 = Check Deduplication

KSF6 = Define POW

KSO ={KSO1, KSO2, KSO3},

A set Of Output

KSO1 = Key

KSO2 = De-duplication result

KSO3= User File Details

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 972

7. EXPERIMENTAL SETUP
There are three entities present in proposed system such as, user, Seccloud and data auditor.

System is implemented on java-jdk 1.7.0 platform. Apache-6 and mysql-5.6 is configured on same system for server

side setup. Netbeans 8.0.1 IDE is used for implementation of client side system. The client side GUI is designed

using swing components. Eclipse indigo is used for cloud server system implementation.

Dataset:

Synthetic Dataset: For system testing we have generated synthetic dataset. It contains the files of different type of

extension such as, xml, json, txt, java, .cs. etc.

8. RESULT TABLES AND DISCUSSION

Table 1: Time estimation values for proposed system

File

size(in

KB)

File

deduplication

check time

Block

deduplication

check time

File

upload

check

time

200 1.397 11.545 23.311

400 2.698 22.519 43.232

600 2.947 49.167 94.176

800 7.402 122.528 245.488

1000 9.106 166.026 322.737

 Chart 1: Time estimation values for proposed system

Table 1 represents the time estimation values in terms of file de-duplication, block de-duplication and file upload

check time. For testing we have used 200, 400, 600, 800 and 1000 KB of files. According to observation, time

required for block de-duplication check and block upload is more than time required for file de-duplication.

Chart 1, represents the time estimation values in graphical format. In this X-axis consists of file size in KB and Y-

axis consists of processing time on second.

Table 2: Time estimation values for existing system

File

size(in

KB)

File

deduplication

check time

Block

deduplication

check time

File

upload

check

time

200 2.412 8.249 34.74

400 1.991 36.337 171.715

600 3.234 50.441 271.715

800 12.123 53.838 312.1

1000 7.944 52.43 349.368

Chart 2: Time estimation values for existing system

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 973

Table 2, represents the time estimation values in terms of file de-duplication, block de-duplication and file upload

check time. For testing we have used 200, 400, 600, 800 and 1000 KB of files.

Chart 2 represents the time estimation values in graphical format for existing system. In this X-axis consists of file

size in KB and Y-axis consists of processing time in second.

Table 3: Partial File de-duplication

File

size(in

KB) 25% 50% 75% 100%

200 32.52 29.52 24.18 0.43

400 68.2 64.43 50.39 2.98

600 101.72 95.23 76.33 3.45

800 192.44 167.18 143.07 4.76

1000 260.64 231.21 174.02 6.02

Chart 3: Partial De-duplication check

If file is partially present then only remaining blocks are uploaded to SecCloud and links are created for the file. We

have tested this scenario for different cases where 25\%, 50\%, 75\% file is already present on the server. Following

table shows the detailed description for partial file level de-duplication.

Table 4: Performance evaluation

File

size(in

KB)

File de-

duplication

time

Block de-

duplication

time

Block

upload

time

200 1.397 11.545 23.311

400 2.698 22.519 43.232

600 2.947 49.167 94.176

800 7.402 122.528 245.488

1000 9.106 166.026 322.737

Chart 4: Block uploading

Table 4 represents the system performance in terms of file de-duplication, block de-duplication and block upload

time. As per analysis, time required for block de-duplication check and block upload is more than time required for

file de-duplication.

Chart 4, represents the performance evaluation in graphical format for proposed system. In this X-axis consists of

file size in KB and Y-axis consists of processing time in second.

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 974

Table 5: Comparative Analysis

Chart 5: Comparative Analysis

In table 5 comparative analysis between proposed and existing systems is given. Comparison is analyzed in terms of

block uploading time. As per observations proposed system required less timing than existing system because in

proposed system we utilized block tags as a convergent key for block encryption purpose hence it reduces the

processing time as well as saves the space required for convergent key. It predicts that proposed system is space and

time efficient as compared to existing system.

Graphical format of system comparison is given in Chart 5 in which X-axis consists of file size if KB and Y-axis

consists of time in seconds.

Table 6: Comparative Study

Table VI represents the comparative analysis between existing and proposed systems. Proposed system is more

efficient than the existing due to features like, space efficient convergent key, data auditing, MHT tree construction

etc.

9. CONCLUSIONS

We proposed approach of data de-duplication and auditing. There are several techniques available for secure data

deduplication and integrity auditing. But they suffered from certain problems such as, data reliability. There is

problem with encryption technique which is used by existing system, which required different cipher-texts for

different users to share identical data. Another problem is integrity auditing as cloud usage traditional way to

transformed data through internet and stored it in any random domain. Data de-duplication is one of the recent

File size(in

KB)

Existing system

deduplication

time

Proposed system

deduplication

time

200 34.74 23.311

400 171.715 43.232

600 271.715 94.176

800 312.1 245.488

1000 349.368 322.737

Paper

File

level

deduplication

Block

level deduplication

Convergent

Key

MHT-

Tree Sharing

Space

efficient

convergent

key

Data

auditing

Block Level De-duplication

Check Y Y Y N Y N N

Secure Distributed Deduplication Y Y N N N N N

Secure auditing and De-

duplication Y Y Y Y Y N Y

Proposed Solution Y Y Y Y Y Y Y

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 975

technologies / techniques in cloud storage in current market trends that avoid such data duplication caused by

privileged as well as non-privileged user. It enables companies, organizations to save a lot of money on data storage,

on bandwidth to transact data when replicating it offsite for disaster recovery. We proposed two types of techniques

such as SecCloud and SecCloud+ to preserve data integrity.

10. ACKNOWLEDGEMENT

A very firstly I gladly thanks to my project guide Prof. S. K. Sonkar, for their valuable guidance for implementation

of proposed system. I will forever remain a thankful for their excellent as well as polite guidance for preparation of

this report. I would sincerely like to thank to HOD Prof. R. L. Paikrao and other staff for their helpful coordination

and support in project work. Also I am thankful of Principal of AVCOE, Sangamner, Prof. M.A.Venkatesh for their

kind support and motivation for proposed research work.

11. REFERENCES

[1] Jingwei Li, Jin Li, Dongqing Xie, and Zhang Cai “Secure Auditing and Deduplicating Data in Cloud” VOL. 65,

NO. 8, AUGUST 2016

[2] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou, “Secure deduplication with efficient and reliable convergent key

management,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615–1625, Jun. 2014.

[3] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of ownership in remote storage systems,” in

Proc. 18th ACM Conf. Comput. Commun. Secur., 2011, pp. 491–500

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, and D. Song, “Remote data

checking using provable data possession,” ACM Trans. Inform. Syst. Secur., vol. 14, no. 1, pp. 1–34, 2011.

[5] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient provable data possession,” in

Proc. 4th Int. Conf. Secur. Privacy Commun. Netow., 2008, pp. 1–10.

[6] Erway, A. Kupc € ¸u, C. Papamanthou, and R. Tamassia, € “Dynamic provable data possession,” in Proc. 16th

ACM Conf. Comput. Commun. Secur., 2009, pp. 213–222.

[7] H. Wang, “Proxy provable data possession in public clouds,” IEEE Trans. Serv. Comput., vol. 6, no. 4, pp. 551–

559, Oct.-Dec. 2013

 [8] F. Sebe, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, and J.-J. Quisquater, “Efficient remote data

possession checking in critical information infrastructures,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 8, pp.

1034–1038, Aug. 2008

[9] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc. 14th Int. Conf. Theory Appl. Cryptol.

Inform. Secur.: Adv. Cryptol., 2008, pp. 90–107.

[10] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability and data dynamics for storage

security in cloud computing,” in Proc. Comput. Secur., 2009, pp. 355–370.

[11] J. Xu and E.-C. Chang, “Towards efficient proofs of retrievability,” in Proc. 7th ACM Symp. Inform., Comput.

Commun. Secur., 2012, pp. 79–80.

[12] Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A scalable cloud file system with efficient integrity

checks,” in Proc. 28th Annu. Comput. Secur. Appl. Conf., 2012, pp. 229–238.

[13] M. Azraoui, K. Elkhiyaoui, R. Molva, and M. Onen, “Stealthguard: € Proofs of retrievability with hidden

watchdogs,” in Proc. Comput. Secur., 2014, pp. 239–256.

[14] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou, “Secure deduplication with efficient and reliable convergent

key management,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615–1625, Jun. 2014.

Vol-3 Issue-4 2017 IJARIIE-ISSN (O)-2395-4396

6101 www.ijariie.com 976

[15] W. K. Ng, Y. Wen, and H. Zhu, “Private data deduplication protocols in cloud storage,” in Proc. 27th Annu.

ACM Symp. Appl. Comput., 2012, pp. 441–446

[16] J. Douceur, A. Adya, W. Bolosky, P. Simon, and M. Theimer, “Reclaiming space from duplicate files in a

serverless distributed file system,” in Proc. 22nd Int. Conf. Distrib. Comput. Syst., 2002, pp. 617–624.

[17] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryption and secure deduplication,” in Proc.

Adv. Cryptol, 2013, pp. 296–312.

[18] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev, “Message-locked encryption for lock-

dependent messages,” in Proc. Adv. Cryptol., 2013, pp. 374–391.

