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ABSTRACT 
The static characteristics of Sigmoid Functionally Graded Material (S-FGM) plates of double curvature 

motivates the author to perform this research study. Principle of virtual work are utilised to derive the governing 

equation of motion and associated natural boundry conditions. Analytical solutions are obtained using Navier’s 

technique for simply supported boundry conditions. Some numerical results are compared with published results 

and found to be in excellent agreement. Both the effect of shear strain and displacement are included in the 

theory.  Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM) 

nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate 

are assumed to vary according to sigmoid function (two power law distribution) of the volume fraction of the 

constituents. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on 

bending response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect 

ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending response are investigated. 
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1. INTRODUCTION 

Functionally graded materials (FGMs) are multifunctional materials, which contain a spatial variation in 

composition and/or microstructure for the specific purpose of controlling variations in thermal, structural or 

functional properties. FGMs produced using ceramic and metal has the property of metallic tenacity and yet it is 

heat proof and anti-corrosive like ceramic. It can also be used as a material to withstand thermal stress. The 

solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and 

vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect 

ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are 

investigated. Results of the present theory show a good agreement with the reference solutions. These results can 

be used for evaluating the reliability of size-dependent SFGM nanoscale plate models developed in the future.  

The FGM plate has been modeled using a three-dimensional (3D) theory of linear elasticity or by two-

dimensional (2D) plate theory of plane stress and plane strain. Mindlin [1] developed the transverse shear effect 

was, based on the linear variation of transverse shear shape function, which is known as "First-order Shear 

Deformation Theory (FSDT). Due to the linear variation of transverse shear shape function, transverse shear 

strain and hence the transverse shear stress results in a constant value which violates the parabolic variation of 

transverse shear stress along with the thickness.   
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Reddy [2] presented the most widely used polynomial based "Higher-order Shear Deformation Theory" (HSDT) 

is "Third-order Shear Deformation Theory" (TSDT) by expanding the m-plane displacements up to the third 

order of thickness coordinate and satisfying the zero transverse shear stresses at the top and the bottom surface of 

the plate. Thai and Vo [3] proposed a theory that contained four unknowns and also had a strong similarity with 

CPT Neves et al [4] proposed a Quasi 3D SSDT theory in which polynomial function is considered in the 

transverse direction.  

Mantarı et al. [5] proposed mixed sinusoidal and exponential based shear strain function Thai et al and Nguyen 

et al [6] proposed inverse tangential shear shape function for composite laminated plates and FGM plates 

respectively. The inverse co-tangent shear shape function is proposed by Grover et al [7] for static buckling and 

free vibration analysis of composite laminated plates.  
The objective of this article is to present the static behaviour of sigmoid FGM plates. The plate may be either 

perfectly porous homogenous or has a perfect homogeneity shape depending on the values of the volume fraction 

of voids or of the graded factors.  
A Navier solution is used to obtain closed form solutions for simple supported FG plates. Several important 

aspects, i.e. aspect ratios, exponent graded factor as well as porosity volume fraction, which affect deflections 

and stresse, are investigated.  

2. BASIC ASSUMPTIONS OF THE PLATE THEORY  
 

Consider a FG thick rectangular plate of length a, width b, and thickness. The coordinate system is taken such 

that the x-y plane coincides with midplane of the plate, Let the FG plate be subjected to a transverse load q(x ,y) 

The plate is composed of a functionally graded material across the thickness direction. The assumptions of the 

present plate theory areas follows:- 
• the displacements are small in comparison with the plate thickness, therefore, the strains involved are 

infinitesimal;  
• the transverse displacement w includes two components of bending w, and shear w, these components 

are functions of the coordinates x,y only.  
                                          𝒘(𝒙, 𝒚, 𝒛) = 𝒘𝒃(𝒙, 𝒚) + 𝒘𝒔(𝒙, 𝒚)                                                                                (1) 

• the transverse normal stress ϭz, is negligible in companson with in-plane stresses ϭx and ϭy.  
• the displacements u in the x-direction and v in the y-direction consist of extension, bending and shear 

components,  
                    𝑼 = 𝒖𝟎 + 𝒖𝒃 + 𝒖𝒔 ,   𝑽 = 𝒗𝟎 + 𝒗𝒃 + 𝒗𝒔                                                                         (2) 

    

The bending components ub and vb are assumed to be similar to the displacements given by the classical plate 

theory. Therefore, the expression for ub and vb can be given as  
  

                                                                                                                                 (3) 

The shear components us and vs give rise, in conjunction with ws to the parabolic variations of the shear strains 

𝛄xz and 𝛄yz  and hence to shear stresses 𝛕xz  and 𝝉yz  through the thickness of the plate in such a way that shear 

stresses 𝝉xz  and 𝝉yz  are zero at the top and bottom faces of the plate. Consequently, the expression for us and vs 

can be given as  

                                                                                                                               (4)  

where 

                                                                                                                                           (5)  

3. KINEMATICS  
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3.1 Displacement field  
 

The displacement field of the FG plate under consideration is given below:  

                                                                                     (6)  
 

 
 

Fig -1: Geometry and coordinates of the FG plate 

 

 

3.2 Strain- Displacement relationship 

 

For the small plate deformation, the six strain components   

(𝜺x, 𝜺y, 𝜺z, 𝜸xy, 𝜸xz, 𝜸yz ) and three displacement components (u,v,w) are related according to the well-known linear 

kinematic relations.  
  

x     y 

    
z = 0  

  

                                                                               (7)   

 3.3 Stress Strain relationship  

The stress strain relationship of FG plate is given as follows:  

 =                                             (8)  

Where,  
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                                                                                        (9)  

  

Where,  

                                                                      (10)  

  

Where Ec and Em are the corresponding properties of the ceramic and the metal respectively, and p is the 

volume fraction exponent, which takes value greater than or equal to zero.  

 

3.4 Governing equations and boundary conditions  

For the case of static analysis, According to Principle of virtual work,  

  

                                                                                                                                               (11)  

Where, δ is strain energy variation of the plate.   

Substituting values of stresses and strains from Eq (7) in Eq (11), then integrating it by parts and equating it to 

zero we get six governing equations as follows:  

 

0           (12)                                                    

  

 

0                                                      (13)                                                                                             

 

                                                                                                                                                  (14)       

 

                                                                                                     (15)  

  

Solving Eq. 6,7,8,9,and 10 we get stiffness constants.  
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Where stiffness constants are,  

Aij      

Bij   

Cij       

Dij       

Eij       

Fij       

Gij                                                                                                                                           (16)   

 
3.5.  Navier’s Solution  

To prove the efficient and validity of presented theory, the Navier’s solution technique is employed to determine 

numerical solution for simply supported FG plate. Following are boundary conditions at simply supported edge of 

plate.  
At x=0, x=a and y=0, y=b  

The following solution form is aasumed for unknown variables in displacement fields which satisfies simply 

supported boundry conditions exactly mentioned in equations.  
  

  

                                                                                                                                  (17)  

Where,   and   and m and n are mode numbers. For the case of a sinusoidally  

distributed load, we have m = n = 1 and q11 = q˳ where q˳ represents the intensity of the 

load at the plate’s center.  
Substituting Navier’s solution form in Eq (12) to (15) we get following four equations, δu0 = (𝐴11α2 + 
𝐴66β2)𝑢𝑚𝑛 + (𝐴12 + 𝐴66)αβ 𝑣𝑚𝑛 − [(𝐵12 + 2𝐵66)αβ2 + 

𝐵11β3] 𝑤𝑏𝑚𝑛 + [(𝐶12 + 2𝐶66)αβ2 + 𝐶11α3] 𝑤𝑠𝑚𝑛 = 0                                                                                            (18)  

  

δv0 = (𝐴66α2 + 𝐴22β2)𝑢𝑚𝑛 + (𝐴12 + 𝐴66)αβ 𝑣𝑚𝑛 − [(𝐵12 + 2𝐵66)αβ2 + 

𝐵11β3] 𝑤𝑏𝑚𝑛 + [(𝐶12 + 2𝐶66)αβ2 + 𝐶22α3] 𝑤𝑠𝑚𝑛 = 0                                                                                            (19)  

  

δw𝑏 = −[(𝐵21 + 2𝐵66)αβ2 + 𝐵11α3]𝑢𝑚𝑛 − [(𝐵12 + 2𝐵66)α2β + 𝐵22β3]𝑣𝑚𝑛 + 

[(𝐷11α4) + (𝐷12 + 𝐷21 + 4𝐷66)α2β2 + (𝐷22β4)] 𝑤𝑏𝑚𝑛 − [(𝐸11α4) + (𝐸12 + 𝐸21 + 

4𝐸66)α2β2 + (𝐸22β4)] 𝑤𝑠𝑚𝑛 = −𝑞𝑚𝑛                                                                                                                     (20)  
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δw𝑠 = [(𝐶21 + 2𝐶66)αβ2 + 𝐶11α3]𝑢𝑚𝑛 + [(𝐶12 + 2𝐶66)α2β + 𝐶22]𝑣𝑚𝑛 − [(𝐸11α4) + (𝐸12 + 𝐸21 + 4𝐸66)α2β2 

+ (𝐸22β4)] 𝑤𝑏𝑚𝑛 + [(𝐹11α4) + (𝐹12 + 𝐹21 + 
4𝐹66)α2β2 + (𝐹22β4) + (𝐺55α2 + 𝐺44β²)] 𝑤𝑠𝑚𝑛 = −𝑞𝑚𝑛                                                                                      (21)  

  

One can write equations (18), (19), (20), (21) in following matrix form.  

Matrix form,  

[K] {∆} = {F}  

                                                          (22)  

  

Where [K] = Stiffness Matrix  

The elements of stiffness matrix are:  

𝐾11 = (𝐴11α2 + 𝐴66β²)  

𝐾12 = (𝐴12 + 𝐴66)𝛼𝛽  

𝐾13 = −[(𝐵12 + 2𝐵66)𝛼𝛽2 + 𝐵11α3]  

𝐾14 = [(𝐶12 + 2𝐶66)𝛼𝛽2 + 𝐶11α3]  

𝐾21 = (𝐴21 + 𝐴66)𝛼𝛽  

𝐾22 = (𝐴66α2 + 𝐴22β²)  

𝐾23 = −[(𝐵21 + 2𝐵66)𝛼²𝛽 + 𝐵22β3]  

𝐾24 = [(𝐶21 + 2𝐶66)𝛼²𝛽 + 𝐶22β3]  

𝐾31 = −[(𝐵21 + 2𝐵66)𝛼𝛽2 + 𝐵11α3]  

𝐾32 = −[(𝐵12 + 2𝐵66)𝛼²𝛽 + 𝐵22α3]  

𝐾33 = [(𝐷11α4) + (𝐷12 + 𝐷21 + 4𝐷66)𝛼²𝛽² + (𝐷22β4)]  

𝐾34 = −[(𝐸11α4) + (𝐸12 + 𝐸21 + 4𝐸66)𝛼²𝛽² + (𝐸22β4)]  

𝐾41 = [(𝐶11α3) + (𝐶21 + 2𝐶66)𝛼𝛽²] 𝐾42 = [(𝐶22β3) + (𝐶12 + 
2𝐶66)𝛼²𝛽]  
𝐾43 = −[(𝐸11α4) + (𝐸12 + 𝐸21 + 4𝐸66)𝛼²𝛽² + (𝐸22β4)]  

𝐾44 = [(𝐹11α4) + (𝐹12 + 𝐹21 + 4𝐹66)𝛼2𝛽2 + (𝐹22β4) + (𝐺55α2 + 𝐺44β²)]                                                      (23)  

  

Where,   and    

 
 
3. NUMERICAL RESULTS AND DISCUSSION 

 The present theory is applied to the static analysis of FG plates. The FG plate is supposed to be aluminum and    

alumina with the following material properties:  

Metal (aluminum, Al) : Em =70 x 10
9
 N/m

2 
; µ = 0.3  
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Ceramic (Alumina, Al2O3) : Ec = 380x10
9
 N/m

2 
; µ = 0.3                               

 The various non-dimensionless parameters used are :   

w  

    ϭx   , ϭx  

 

  

Table -1: Comparison of deflections and dimensionless axial stress of FG plate for different volume fraction values 

 
Theory  p  W  ϭx  τxz  

S. Merdaci    

  

  

Ceramic 

0.08122  1.99550  0.24618  

FSDPT [62]  0.07791  1.97576  0.15915  

PSDPT[49]  0.07791  1.99432  0.23857  

SSDPT[61]  0.07790  1.999550  0.24618  

Present  0.08808  2.70969  0.14941  

S. Merdaci    

  

  

1  

0.19703  0.94407  0.34103  

FSDPT 

[62]  
0.19609  0.93765  0.26880  

PSDPT[49]  0.19604  0.94370  0.33433  

SSDPT[61]  0.19604  0.94407  0.34103  

Present  0.17684  0.87023  0.35334  

S. Merdaci    

  

  

  

2  

0.28479  1.37702  0.41426  

FSDPT 

[62]  
0.28661  1.36934  0.34892  

PSDPT[49]  0.28490  1.37662  0.40919  

SSDPT[61]  0.28479  1.37702  0.41426  

Present  0.30864  1.03557  0.41125  

S. Merdaci    

  

  

  

5  

0.33606  1.62591  0.47502  

FSDPT 

[62]  
0.33851  1.61758  0.41003  

PSDPT[49]  0.33624  1.62552  0.47133  

SSDPT[61]  0.33606  1.62591  0.47502  

Present  0.32396  1.25657  0.39746  
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S. Merdaci    

  

  

  

10  

0.38090  1.84026  0.57591  

FSDPT 

[62]  
0.38402  1.83097  1.83097  

PSDPT[49]  0.38116  1.83989  0.57591  

SSDPT[61]  0.38090  1.84026  0.57337  

Present  0.37276  1.46967  0.38419  

  

  

Table -2: Deflections of S-FG plate 

  W    

P=0  P=1  P=2  P=5  P=10  

0.08808  0.176836  0.308641  0.323958  0.372755  

0.08808  0.176836  0.308641  0.323958  0.372755  

0.08808  0.176836  0.308641  0.323958  0.372755  

0.08808  0.176836  0.308641  0.323958  0.372755  

0.08808  0.176836  0.308641  0.323958  0.372755  

0.08808  0.176836  0.308641  0.323958  0.372755  

0.08808  0.176836  0.308641  0.323958  0.372755  

0.08808  0.176836  0.308641  0.323958  0.372755  

0.08808  0.176836  0.308641  0.323958  0.372755  

0.08808  0.176836  0.308641  0.323958  0.372755  

  

  

Table -3: Axial stress of first layer S-FG plate 

   ϭx    

  P=0  P=1  P=2  P=5  P=10  

LAYER  

1  

-2.709688  -0.870229  -1.035571  -1.256572  -

1.469672  

-1.757538  -0.825161  -0.720446  -0.836684  -

0.969539  
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-1.058202  -0.664131  -0.510557  -0.525398  -

0.598086  

-0.573921  -0.46426  -0.354815  -0.307753  -

0.336104  

-0.245889  -0.26372  -0.220389  -0.157851  -

0.153705  

0  0  0  0  0  

 

Table -4: Axial stress of second layer S-FG plate 

   ϭx    

   P=0  P=1  P=2  P=5  P=10  

LAYER   

2  

0  0  0  0  0  

0.245889  0.26372  0.220389  0.157851  0.153705  

  0.573921  0.46426  0.354815  0.307753  0.336104  

1.058202  0.664131  0.510557  0.525398  0.598086  

1.757538  0.825161  0.720446  0.836684  0.969539  

2.709688  0.870229  1.035571  1.256572  1.469672  

  

           Table -5: Transverse shear stress of first layer S-FG plate. 

   τxz    

   P=0  P=1  P=2  P=5  P=10  

LAYER  

1  

0  0  0  0  0  

-0.149410  -0.083629  -0.071743  -0.083464  -

0.101150  

-0.284194  -0.207896  -0.173823  -0.198976  -

0.192398  

-0.391160  -0.353344  -0.291546  -0.270853  -

0.264820  

-0.459836  -0.494380  -0.411255  -0.378512  -

0.345140  

-0.483510  -0.502886  -0.448456  -0.397460  -

0.384191  
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             Table -6: Transverse shear stress of second layer S-FG plate.  

   τxz    

   P=0  P=1  P=2  P=5  P=10  

LAYER  

2  

0.483510  0.502886  0.448456  0.397460  0.384191  

0.459836  0.494380  0.411255  0.378512  0.345140  

0.391160  0.353344  0.291546  0.270853  0.264820  

0.284194  0.207896  0.173823  0.198976  0.192398  

0.149410  0.083629  0.071743  0.083464  0.101150  

 0  0  0  0  0  

  

Comparison of deflections and dimensionless axial stresses and transverse shear stresses of FG plate for different 

volume fractions is shown in Table 1. The present predictions are compared with first order, parabolic and 

sinusoidal shear deformation theories. It is observed that, the value of deflection and transverse shear stresses  

increases and decreases the axial stress for different volume fraction values. Deflections, axial stresses and 

transverse shear stresses of S-FG plate for different volume fractions is shown in Table 2, 3, 4, 5, 6. It is 

observed that, the value of deflection increases with increase in volume fraction values.  

  

  

  

 
 

Fig -2: Displacement variation of S-FGM plate 
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Fig -3: Distribution of axial stress of FGM plate 

  

 

Fig -4: Distribution of transverse shear stress of FGM plate. 

  

Variation of the dimensional displacement as a function of geometric ratio (a/b) for a ratio of equal thickness 

(a/h=10) and a material index p=0 to 10 is shown in Fig. 2.It is observed that the deflection of the FG plate 

decreases as the geometric ratio increases. Variation of the axial stress across the plate thickness in FGM is 

shown in Fig. 3. It is seen that the stresses are tensile above the meridian plane and compressive below the 

meridian plane. The maximum stress depends on the value of the exponent of the volume fraction p.   
Shear stresses are plotted through the transverse thickness distribution in Fig. 4. It is observed that the transverse 

shear stress decreases at a point on the meridian plane of FG plate.  

5. CONCLUSIONS  

The theory is evaluated for simply supported sigmoidal FGM plate subjected to the static conditions. This theory 

satisfies the nullity of the stresses at the upper and lower surfaces of the plate without using the shear correction 

factor, contrary to other theories. The effect of various parameters, such as thickness ration, gradient index and 
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volume fraction of ceramic-metal plates are discussed. From the numerical results and discussion various 

conclusions are drawn that is the value of deflection and transverse shear stresses increases for different volume 

fraction values and decreases the axial stresses for different volume fraction values. The value of deflection 

increases with increase in volume fraction values.  
The deflection of the FG plate decreases as the geometric ratio increases. The stresses are tensile above the 

meridian plane and compressive below the meridian plane. The maximum stress depends on the value of the 

exponent of the volume fraction p. The transverse shear stress decreases at a point on the meridian plane of FG 

plate.  

5.1 Scope for future work  

This theory is applicable to static and vibrational analysis of plates and shells.   

This theory is applicable to dynamic analysis of plates and shells.  

This theory can be applied to thermal vibrational analysis of FG plates.  

This theory can be applied to bending analysis of FG plates.  

This theory can be applied to buckling analysis of FG plates. 
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