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ABSTRACT 

 
This document provides a method for modeling a maneuverability envelope of a vehicle in a parking lot of any size. 

The method uses the turning radius, the vehicle size and the type of parking to be used to determine the parking 

trajectory. Parking space management requires knowledge of the minimum space occupied by a vehicle; therefore, 

it is important to define the width and length occupied by a vehicle. To do this, we must consider the size of the 

desired location, as well as that of the circular road. In this paper, we have to studies about parallel parking, 

perpendicular parking and angle parking. 
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1. INTRODUCTION  

Nowadays, with the fast development of science and technology and increase of people’s living standard, the 

number of cars is increasing very fast. The space of car parking significantly reduced, and traffic accidents are 

particularly prone to happen when backing the car for these drivers who have less experience. Thus, the automatic 

parking problem has become a hot research topic but for this paper, the research is based on “How to define the 

maneuverability envelope of a vehicle in a parking lot?” 

Parking types include parallel parking, vertical parking, and oblique parking, as shown in Figure 1. Parallel parking 

is most common in our daily life, so the parallel automatic parking system has become a hot spot of current research. 

The perpendicular or vertical parking is the most efficient and economical since it accommodates the most vehicles 

per linear meter and is especially effective in long term parking areas. As for oblique parking, this is the same of a 

perpendicular parking, but the only difference is the value of the angle inclination. So, in this paper, we have to 

studies especially about parallel and vertical parking. 
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Fig -1: Classification of parking: (a) parallel parking, (b) vertical parking, and oblique parking. 

2. PARKING STRATEGY FOR PARALLEL PARKING ROUTE  

This part of article proposes an optimized route scheme for roadside parking, while considering the surrounding 

environment and the positioning of vehicles. The obstacles can be presented like a vehicle or other things. In 

general, the body of the vehicle is square-shaped, with four wheels and two variations limiting the motion: linear 

(forward and backward) and turning variation (change of direction). When the turning angle is limited, it also limits 

the curvature of the route, leading to the change of tangent direction of the vehicle. Previous studies have provided 

designs and research rules for the parking route planning and orbit. For instance, the triangular function design has 

been used for tracking and controlling the orbit to follow the reference of the orbit route by the feedback linearity of 

the input status; which controls the steering angle and forward position through the motion formula of the vehicle, 

allowing the car driver to complete the parking action within the shortest route. Another work studies the curvature 

radius for the parallel parking of vehicles on the roadside.  

 

2.1 Geometrics and mathematics methods 

 

Fig -2: Parking orbit 

 

As indicated in Figure 2[1], the parking orbit proposed in this article has four steps with which the parking process 

can be completed. Before the basic vehicle dynamic analysis, there are three assumptions, first of which is that the 

vehicle must be driven by the front wheels, and the rear wheels must be paralleled; and the second is that there is no 

gliding between tires and ground, while the third, the angle of the two front wheels must be the same as the turning 

angle; the last, the center of the rear bumper is the main reference point. Hence, the vehicle dynamic analysis will be 

processed through the statements above. The first step measures the side distance 𝐷𝑠 ; while the second step 

determines the distance N from the start point Z to point S by the known distance Ds, which requires entering the 

vehicle back-up mode; and the third step determines the arc distance E from start point S to point B from the known 
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distance Ds. When the vehicle moves from point S to the turning point B, it will enter the final phase. Given that the 

rotating distance for the two sections is the same, the vehicle back-up distance needed from points B to C can be 

determined to complete the action of parking. The method proposed in this article uses the maximum steering angle 

of the vehicle since the demand for the steering angle of the parking action can create two circles, namely, C1 and C2 

(using the minimum rotating radius of the vehicle R). When the center point of the circle C1 is fixed, and the two 

circles C1 and C2 create a tangent line (point B), the starting point of the reverse steering angle of the vehicle can be 

determined. This means that the parking action can be easily completed if the starting point of the vehicle parking 

and the vehicle reverse steering angle are known. The change of back-up starting point as indicated in Figure 3 will 

create different back-up starting points (S1, S2 to Sn) with the change of distance between the center of the rear 

bumper and the site D (D1, D2…Dn). Moreover, the moving distance M from the original point Z to the starting point 

will also change (M1, M2…Mn). 

 

 
 

Fig -3: Change of back-up start point 
 

 
 

Fig -4: Relationship of the vehicle back-up starting point 
 

The decision determining the vehicle back-up starting point must first be discussed. As indicated in Figure 4, the 

vehicle back-up starting point S to the vehicle back-up end point C can form a group of back-up routes (represented 

by purple arc lines). The center points of C1 and C2 can form a right triangle wherein 2R is the hypotenuse and a is 

the included angle. The relationship among a, D, and N can thus be determined using the trigonometric function 

theory: 
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α = sin−1 (
2R−(Wc/2)−D

2R
)                                                 (1) 

D = Ds +
1

2
Wc                                                                  (2) 

and 

N = 2Rcos [   sin−1 (
2R−(Wc/2)−D

2R
)]                              (3) 

M = N + Pd                                                                   (4) 

 

Where 𝐷𝑠 is the distance measured by distance infrared sensor, 𝑊𝑐 is the car width. 𝑃𝑑 is the safe marginal distance 

of the reversed vehicle ; M is the required distance from the starting point Z to the vehicle back-up starting point, 𝑊𝑐  

is the width distance of the vehicle, and R is the minimum rotating radius of the vehicle. The data presented above 

can be obtained in advance. 

 

 
 

Fig -5: Relationship between β and α  
 

When the starting point S is determined, it will determine the position of the tangent point B from the relationship 

between α and β. In the figure 6, the relationship between α and β can be observed as indicated in Equation (5): 

 

𝛽 = 90 − 𝛼                                       (5) 

 

 
Fig -6: Relationship between β and arc length 
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Finally, the position of point B can be determined from the relationship between β and α. The arc length is indicated 

in Figure 7. 𝐸̂ equal to  𝐹̂ is an arc that takes the minimum rotating radius R as the radius. Therefore, 𝐸̂ can be 

obtained if β is known, as indicated in Equation (6):  

 

𝐸̂ = 2𝜋𝑅 (
𝛽

360
)                               (6) 

 

Where β can be determined from Equation (5), and the distance from points S to B can be determined by 

substituting it with Equation (6). Therefore, the position of point B can be determined. 

 

 

 
Fig -7: Illustration of parking space 

 
After the parking path is determined, the parking space should be estimated whether it is larger enough to 

accomplish parking behavior. Figure 6 shows the size of the parking space. When the vehicle moves forward, the 

sided ultrasonic radar of the vehicle can measure the distance of 𝐷𝑆 and 𝐷𝑆1. Therefore, the width of the parking 

space can be calculated, and it’s the actual size of can be estimated by forward distance. The following content will 

mention about the calculation of size for a parking space. Referred to Figure 7, the minimum width of the parking 

space is equal to the width of the vehicle (𝑊𝑐). To avoid the front edge of the vehicle crashing point A of the parking 

space, the minimum distance from the front edge of the parking space to the circle center, C1, should plus a rotating 

radius, R, for safety distance margin that should be larger two third than the original width of the vehicle; hence, the 

crashing situations can be avoided. σ can be obtained by using trigonometric function theorem. As shown in 

Equation (7): 

 

𝜎 = sin−1 (
𝑅 − (2𝑊𝐶/3)

𝑅 + (2𝑊𝐶/3)
)                                                           (7) 

 

The equation of σ and PF can be expressed in Equation (8): 

 

cos 𝜎 =
𝑃𝐹

𝑅 + (2𝑊𝐶/3)
                                                                       (8) 

 

At last, Equation (7) is substituted into Eq.(8), and the minimum length of the parking space can be determined. 

 

𝑃𝐹(𝑚𝑖𝑛) = (𝑅 + (2𝑊𝐶/3)) cos (sin−1 (
𝑅 − (2𝑊𝐶/3)

𝑅 + (2𝑊𝐶/3)
))         (9) 

 

Known from Equation (9), the size of parking space is relative to the minimum rotating radius of the vehicle. If the 

rotating radius is smaller, the parking space can also be smaller.  
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2.2 Algorithm 

  
Fig -8: Flow chart of the 1st movement (b) illustration of parking behavior 

 
As following, the flow chart and the parking illustration will explain the principle of the entire auto parking 

behavior. At first, we must calculate the distance (DS) between the vehicle and the edge of the parking space. Also, 

Equation (3) and Equation (4) can calculate the forward distance(M) of the vehicle. Later, the car driver starts to 

move and detect the distance of the edge for the parking space to meet DS1 ≥ WC+DS. Once the equation is 

established, it means that the correct position, Z, is reached. On the other hand, the vehicle keeps moving and 

detecting the distance DS1 again, as shown in Figure 8 (a) (b). 
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Fig -9: Flow chart of the 2nd movement (b) illustration of parking behavior  

 

Next, when the vehicle moves back to reach to position, Z, the forward distance for the vehicle starts to be 

calculated. To compare with the moving distance and M obtained from the path formula, it helps to judge the 

forward distance on whether it reaches S or not. Once the forward distance and M are equal, it shows that the vehicle 

arrives to the destination exactly. If not, the vehicle keeps detecting until the forward distance and M are the same, 

as shown in Figure 9(a) (b). When the vehicle reaches S, we must start to calculate the reversed distance to make 

sure that  𝐸̂ = 𝐹̂. Besides, the vehicle can determine the parking space which is larger enough or not. 

Finally, step 3 and 4 will be the accomplished parking behavior in the end. When the vehicle enters starting point, S, 

the steering wheel will be turned to left to the end. Thus, the vehicle switches to reversed parking mode. In the 

meantime, using algorithm the MCU will also calculate the distance until the vehicle reaches the reversing point, B. 

If the vehicle reaches B, the MCU will command the vehicle to turn right of the steering wheel to the end. Then, the  
vehicle starts to be reversed to move into the parking space. The whole parking behavior is accomplished. 

Therefore, due to the importance of the reversing point, as shown in Figure 10(a) (b), the flow chart is about how to 

find a reversing point. 
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Fig -10: (a) flow chart of the 3rd and 4th movement (b) illustration of reversed parking behavior 

 

Through the description above, the proposed parking strategy can help to park the vehicle into the parking space 

accurately with only two times rotating behavior. 

 

3. PARKING STRATEGY FOR PERPENDICULAR PARKING ROUTE 
The perpendicular parking is the most efficient and economical since it accommodates the most vehicles per linear 

meter [2] and is especially effective in long term parking areas. Due to the special constraint environments, much 

attention and driving experience is needed to control the vehicle, and this parking maneuver may be a difficult task. 

For this reason, automated operation attracts significant attention from research view point, as well, and from the 

automobile industry. One of the difficulties in achieving automatic parking is the narrow operating place for 
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collision-free motion of the vehicle during the parking maneuver and planning of optimal trajectories is often used in 

the applications. In [3], an optimal stopping algorithm was designed for parking using an approach combining an 

occupancy grid with planning optimal trajectories for collision avoidance. The geometry of the perfect parallel 

parking maneuver is presented in [4]. In [5], a practical reverse parking maneuver planner is given. A trajectory 

planning method based on forward path generation and backward tracking algorithm, especially suitable for 

backward parking situations is reported in [6]. A car parking control using trajectory tracking controller is presented 

in [7]. In [8], a saturated feedback control for an automated parallel parking assist system is reported. In recent 

years, automatic parking systems have been also developed by several automobile manufacturers.  

In this paper, we focus on geometric collision-free path planning, and feedback steering control for perpendicular 

reverse parking in one maneuver. Geometric path planning based on admissible circular arcs within the available 

parking spot is presented to steer the vehicle in the direction of the parking place in one maneuver. Two steering 

controllers (bang-bang and saturated tanh-type) for path tracking are proposed and evaluated.  

 

3.1 Geometrics and mathematics methods 

 In this paper, a rectangular model of a front-wheel passenger vehicle is assumed. The vehicle parameters which 

affect the parking maneuver, as well as the parameter values used in the simulations, are presented in Table 1. 

 

Table -1: Vehicle parameters  

 

Vehicle parameters Notation Value 

Longitudinal vehicle base l 2.6m 

Wheel base b 1.8m 

Distance between the front axle and the front bumper l1 0.94m 

Distance between the rear axle and the rear bumper l2 0.74m 

Maximum steering angle 
αmax 

 
π/6rad 

 
The geometry of the reverse perpendicular parking in one collision–free maneuver is shown in Fig. 1. In the 

perpendicular parking scenario considered in this paper, the vehicle starts to move backward from an initial position 

1 in the parking aisle, with constant steering angle αc, which may be smaller than the maximum steering angle (|αc| 

≤ |αmax|), and has to enter in the parking place (position 2) without colliding with the boundary c1 of parking lot L1 

and boundaries c2, and c3 of parking lot L2. In position 2 the orientation of the vehicle is parallel with respect to the 

parking place. After that, the vehicle continues to move backward in a straight line into the parking place until it 

reaches the final position 3 (Fig. 1). Assuming a circular motion of the vehicle (with turning radius 𝜌𝑐), with center 

O (Fig. 1). The radius ρc is calculated from the formula:  

 

𝜌𝑐 =  
1

tan 𝛼𝑐

                                    (10) 

 

The boundaries of the turning path during the perpendicular parking are determined by the dimensions of the traces 

(circular arcs) formed by the left corner of the front bumper B2 with radius rB2, the left corner of the rear bumper 

B4 with radius rB4, and the end of the rear wheel axle C1, respectively, as shown in Fig.1. Since the vehicle 

executes a plane rotation, the trajectories of these points form arcs of concentric circles. 
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Fig -11: Geometry of the collision-free perpendicular parking maneuver 
 

From the ΔOC2B2, applying the Pythagorean Theorem, we obtain an expression for the radius 𝑟𝐵2 of the circular arc 

traced by the left corner of the front bumper B2 in terms of the vehicle parameters l, l1, b , and the turning radius 𝜌𝑐, 

as follows 

𝑟𝐵2 = 𝑂𝐵2 = √(𝑙 + 𝑙1)2 + (𝜌𝑐 +
𝑏

2
)

2

                                   (11) 

 

From the ΔOC2B4, we determine the radius rB4, of the circular arc traced by the left corner of the rear bumper B4 

 

𝑟𝐵4 = 𝑂𝐵4 = √𝑙2
2 + (𝜌𝑐 +

𝑏

2
)

2

                               (12) 

 

We assign an inertial frame 𝐹𝑥𝑦 attached to the parking place, where the center F is placed in the middle between the 

borders of the parking place, which has its y-axis aligned with the boundary c2 of parking lot L2, as shown in Fig. 1. 

Let O denotes the center of rotation of the vehicle (the Instantaneous Center of Rotation (ICR)) when it starts the 

parking maneuver with constant steering angle αc. Depending on the sign of x-coordinate of ICR (point O) with 

respect to the 𝐹𝑥𝑦 frame, i.e., the offset s (Figure 11), different formulas can be derived in order to determine the 

required width hp of the parking place and the width of the parking aisle (the corridor) ℎ𝑐 as functions of s in order 

to ensure collision-free perpendicular parking in one maneuver. We consider right turning of the car in the following 

two cases: 

 The ICR O belongs to the interval: 𝑠 ∈ [− (𝜌𝑐 −
𝑏

2
) , 0] 

The lower value of the interval corresponds to the case when the right side of the vehicle B1B3 (Figure 11) lies on 

the boundary line c2 of parking lot L2. 

In order to avoid collision between the left corner B2 of the front bumper with the boundary c1 of L1 (Figure 11), 

using (11), we obtain an expression for the width of the parking aisle ℎ𝑐, as follows 



Vol-5 Issue-5 2019            IJARIIE-ISSN(O)-2395-4396   
 

10930 www.ijariie.com 837 

ℎ𝑐 = 𝑟𝐵2 − |𝑠| = √(𝑙 + 𝑙1)2 + (𝜌𝑐 +
𝑏

2
)

2

− |𝑠|                               (13) 

 

The function ℎ𝑐 = 𝑓(𝑠) defined by (13) is linear in s, positive and monotonically increasing in the above-mentioned 

closed interval for s. Therefore, it takes its minimum and maximum values at the ends of this interval.  

To avoid a collision between the right point C1 of the rear axle with the vertex A of obstacle L2, from the ΔOAD, 

applying the Pythagorean Theorem, the distance OD (Figure 11) is calculated as follows 

 

𝑂𝐷 = √(𝜌𝑐 −
𝑏

2
)

2

− 𝑠2                                                                        (14) 

 

To avoid a collision between the left corner B4 of the rear bumper with the edge c3 of the parking place, using (12) 

and (14), the following expression for the width hp of the parking space is obtained 

 

ℎ𝑝 = 𝑟𝐵4 − 𝑂𝐷 = √𝑙2
2 + (𝜌𝑐 +

𝑏

2
)

2

− √(𝜌𝑐 −
𝑏

2
)

2

− 𝑠2              (15) 

 

The function ℎ𝑝 = 𝑓(𝑠) defined by (15) is continuous on the closed interval of s mentioned above. This function is 

differentiable on the open interval 𝑠 ∈ [− (𝜌𝑐 −
𝑏

2
) , 0], and its derivative is given by 

 
𝜕ℎ𝑝

𝜕𝑠
=

𝑠

√(𝜌𝑐 −
𝑏

2
)

2

− 𝑠2 

< 0                                                               (16) 

 

Therefore, the function ℎ𝑝 = 𝑓(𝑠) is strictly decreasing on the closed interval [− (𝜌𝑐 −
𝑏

2
) , 0]. The maximum and 

minimum values of ℎ𝑝 can be found by replacing in (15) the boundary values of the interval: 𝑠 = − (𝜌𝑐 −
𝑏

2
) and s = 

0. 

 The ICR O belongs to the interval: 𝑠 ∈ [0, 𝑙2] 
The upper bound 𝑙2 corresponds to the case when the rear bumper lies on the Fy-axis at the instant when the 

orientation of the vehicle is parallel to the parking place. 

In order to avoid a collision between the left corner B2 of the front bumper with the boundary c1 of L1, using (11), 

we obtain an expression for the width of the parking aisle ℎ𝑐 

 

ℎ𝑐 = 𝑟𝐵2 + 𝑠 = √(𝑙 + 𝑙1)2 + (𝜌𝑐 +
𝑏

2
)

2

+  𝑠                                               (17) 

 

Again, the function ℎ𝑐 = 𝑓(𝑠) defined by (17) is linear in s, positive and monotonically increasing in the above-

mentioned close interval of s. Therefore, it takes its minimum and maximum values at the ends of this interval.  

To avoid a collision between the left corner B4 of the rear bumper with the edge C3 of the parking place, and 

between the right point C1 of the rear vehicle axle with the vertex A of obstacle L2, we obtain the following 

expression for hp 

 

ℎ𝑝 = √𝑙2
2 + (𝜌𝑐 +

𝑏

2
)

2

− 𝑠2 − (𝜌𝑐 −
𝑏

2
)                            (18) 

 

The function ℎ𝑝 = 𝑓(𝑠) defined by (18), is continuous on the closed interval of. This function is differentiable on 

the open interval 𝑠 ∈ [0, 𝑙2] and the derivative is 
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𝜕ℎ𝑝

𝜕𝑠
=

𝑠

√𝑙2
2 + (𝜌𝑐 +

𝑏

2
)

2

− 𝑠2 

< 0                                                        (19) 

 

Therefore, the function is strictly decreasing on the closed interval s ∈ [2,0l]. The maximum and minimum values of 

hp can be found by replacing the limit values s = 0 and s = l2 of the interval, respectively, in the expression (19). It 

should be noted that for s = 0, the two functions defined by (15) and (18) take the same maximum value. For 𝑠 = 𝑙2, 

the function ℎ𝑝 = 𝑓(𝑠) takes minimum value, which is exactly the width b of the vehicle.  

From a practical point of view, it is important to determine the starting positions of the vehicle for parking without 

collision in one maneuver in the case when the widths ℎ𝑐  and ℎ𝑝 of the parking aisle and the parking space, 

respectively, are specified in advanced. Suppose that the widths of the parking aisle and the parking place are set as 

ℎ𝑝 = ℎ𝑐𝑑  and ℎ𝑝 = ℎ𝑝𝑑, respectively, and that ℎ𝑐𝑑 < 𝑟𝐵2. In this case, from (11) and (13), it follows that 

 

−|𝑠|𝑚𝑎𝑥 =  ℎ𝑐𝑑 − 𝑟𝐵2                                                                                 (20)  
 

From (12) and (15), we obtain a formula for the minimum value of s as follows 

 

−|𝑠|𝑚𝑎𝑥 = −√(𝜌𝑐 −
𝑏

2
)

2

− (𝑟𝐵4 + ℎ𝑝𝑑)
2

                                               (21) 

 

Simulation results were performed to illustrate the relationships between the widths ℎ𝑐 and ℎ𝑝 of the parking aisle 

and the parking space, respectively, as functions of the offset s in the interval [-(ρ – b/2), 0] by using parameters of 

the test vehicle (Table I) with 𝛼𝑐 = 𝛼𝑚𝑎𝑥, (𝜌𝑐 = 𝜌𝑚𝑖𝑛). The values of ℎ𝑐 and ℎ𝑝, (ℎ𝑐𝑑  and ℎ𝑝𝑑), were chosen as 

follows: ℎ𝑐𝑑 = 6𝑚 and ℎ𝑝𝑑 = 2.5𝑚.  

As seen from Figure 13, the function ℎ𝑝 = 𝑓(𝑠) (the solid blue line) decreases in the interval and converges to 

b=1.8m (the red dotted line), which is exactly the length of the wheel base of the vehicle. Meanwhile, the graph 

intersects the horizontal line for the assigned value of ℎ𝑝𝑑 = 2.4𝑚 (the blue dotted line) at 𝑠 = −|𝑠|𝑚𝑖𝑛 = −1.91m, 

which is the minimum value of s obtained from (17) for collision-free parking. To park the vehicle in one maneuver 

for 𝑠 = −|𝑠|𝑚𝑖𝑛 = −1.91m, from (13), the required minimum width ℎ𝑐  of the parking aisle is obtained to be ℎ𝑐  = 

4.55m which is less than the specified value of ℎ𝑐𝑑 = 6𝑚.  

The function ℎ𝑐 = 𝑓(𝑠) (the green solid line) increases linearly in the interval and the graph intersects the horizontal 

line for the assigned value of ℎ𝑐𝑑 = 6𝑚 (the green dotted line) at 𝑠 = −|𝑠|𝑚𝑎𝑥 = −0.46m, which is the maximum 

value of s, obtained from (16). For 𝑠 = −|𝑠|𝑚𝑎𝑥 = −0.46m, from (14), the required minimum width hp of the 

parking place must be hp = 1.88m, which is less than the assigned value of ℎ𝑝𝑑 = 2.4m.  

Therefore, given specified values ℎ𝑐 =  ℎ𝑐𝑑 = 6m and ℎ𝑝 =  ℎ𝑝𝑑 = 2.4m for the parking aisle and the parking space, 

respectively, for collision-free parking, the offset s can take values in the interval −|𝑠|𝑚𝑎𝑥[−|𝑠|𝑚𝑖𝑛 , −|𝑠|𝑚𝑎𝑥] = [-

1.91m, -0.46m], where the boundary values are determined by (15) and (14), respectively. 
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 Fig -13: Collision-free interval for s  

  
The distances between the car and the boundaries of the parking space ℎ𝑝𝑙 and ℎ𝑝𝑟 (Figure 12), when the vehicle is 

parallel to the parking space, are determined as follows 

  

 ℎ𝑝𝑟 = (𝜌𝑐 −
𝑏

2
) − √(𝜌𝑐 −

𝑏

2
)

2

− 𝑠2                                               (22) 

 ℎ𝑝𝑟 = ℎ𝑝𝑑 − 𝑏 − ℎ𝑝𝑑                                                                         (23) 

 
From the simulations, for 𝑠 = −|𝑠|𝑚𝑖𝑛 = −1.91m, the obtained values of ℎ𝑝𝑟  and ℎ𝑝𝑙 are ℎ𝑝𝑟 = 0.55m and ℎ𝑝𝑙 = 

0.05m. 

From a practical view point, it is better to park the car symmetrically with respect to the boundaries of the parking 

place, since it is not very wide. For this end, we calculate the minimum value of the offset 𝑠 = 𝑠𝑚, to park the 

vehicle symmetrically in the center of the parking space (Figure 13). We set: 

  

 ℎ𝑝𝑠 ∶= ℎ𝑝𝑟 = ℎ𝑝𝑙 =
ℎ𝑝𝑑−𝑏

2
                                                                (24) 

  
 

From the ΔOAD (Figure 14), the distance OD is determined as: 

 

𝑂𝐷 = √(𝜌𝑐 −
𝑏

2
)

2

− 𝑠𝑚
2                                                                                     (25) 

 

 

Since the turning radius can be expressed as 

 

𝜌 =
𝑏

2
+ ℎ𝑝𝑟 + 𝑂𝐷                                                                                            (26) 

 
and substituting ℎ𝑝𝑟 from (13) and OD from (25) into (26), we arrive to an expression for 𝑠𝑚, as follows: 
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−|𝑠|𝑚𝑎𝑥 = −√(𝜌𝑐 −
𝑏

2
)

2

− (𝜌𝑐 −
ℎ𝑝𝑑

2
)

2

                                                  (27) 

 
The new offset −|𝑠𝑚| is bigger than those given by (12) (−|𝑠|𝑚 > −|𝑠|𝑚𝑖𝑛). In the simulation results, −|𝑠|𝑚= -

1.44m > -1.91m. In general, it must be checked whether the new offset −|𝑠|𝑚 is smaller than -|s|max given by (11). 

If it is the case, the car can park symmetrically without collision in reverse when s is at least 𝑠 = −|𝑠|𝑚. In this case, 

however, the boundary c3 of the parking place will not be tangent to the arc of circle traced by point B4 of the left 

corner of the rear bumper; nevertheless, point A (vertex A of obstacle L2) will lie again on the arc of circle traced by 

point C1 of the rear vehicle axle. Therefore, given specified dimensions of the parking aisle and parking place 

ℎ𝑐 =  ℎ𝑐𝑑 and ℎ𝑝 =  ℎ𝑝𝑑, respectively, the offset s can take values in the closed interval −|𝑠| ∈ [−|𝑠|𝑚, −|𝑠|𝑚𝑎𝑥], 

where −|𝑠|𝑚 and −|𝑠|𝑚𝑎𝑥  are determined from formulas (18) and (11), respectively, (Figure 13).  

Hence, in order to perform reverse perpendicular parking in one maneuver and to place the vehicle symmetrically in 

the parking place, the starting position, i.e., the reference point P of the vehicle has to be on any one of the arcs of 

circles with radius ρ of center O(𝑥𝑂 , 𝑦𝑂), where 𝑥𝑂 ∈ [−|𝑠|𝑚, −|𝑠|𝑚𝑎𝑥] and 𝑦𝑂 = −𝜌𝐶 , with respect to an inertial 

frame Fxy attached to the parking place. The initial orientation must be tangent to the arc (Figure 14). The reference 

path of the parking maneuver consists of two parts. The first one is a circular arc with center O connecting the 

staring position of the vehicle and the tangent point T between the arc and the x-axis of Fxy. At that point, the car 

will be parallel to the parking place. The second part of the reference path is a straight line along the y-axis of the 

coordinate frame Fxy between point T and the goal position G of the parking place, where point G lies on the x-axis 

of Fxy, (Figure 13). 

 
 Fig -14: Geometry of collision-free perpendicular parking  
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3.2 Algorithm 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSIONS 

The paper offers a simple auto parking strategy. Auto parking behavior can be achieved easily. The distance 

between the vehicle and boundary of parking space be detected, referring to the minimum rotating radius. In 

addition, auto parking behavior will be accomplished without any control of extra rotating angle. An experimental 

vehicle with auto parking function has been developed. According to the experimental results, APS is satisfactory 

and available. 

In this paper, the problem of perpendicular reverse parking of front wheel steering vehicles was considered. 

Geometric considerations for collision-free perpendicular parking in one reverse maneuver were first presented, 

where the shape of the vehicle and the parking environment were expressed as polygons. Relationships between the 

widths of the parking aisle and parking place, as well as the parameters and the initial position of the vehicle have 

been given, to plan a collision-free maneuver, in the case, when the car must be symmetrically positioned into the 

parking place. Two types of steering controllers (bang-bang and saturated controllers) for straight-line tracking have 

been proposed and evaluated. It was demonstrated that, the saturated tanh-type controller, which is continuous, was 

able to achieve also quick steering avoiding chattering and can be successfully used in solving parking problems. 

Simulation results and the first experiments with a test vehicle confirm the effectiveness of the proposed control 

scheme. 
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