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Abstract 
Software systems have become an integral part of all engineering systems and are providing assistance in a variety of 

engineering activities. However, the quality of assistance provided depends not only on the coded functionality, but also on 

the fact that the software is free from defects. Since formally proving a software system to be correct becomes more and 

more difficult as the size and complexity increases, one of the pragmatic ways of ensuring software correctness is through 

testing. Test Data Generation Approaches for Object Oriented Systems, in presence of State Based Problem, using 

evolutionary techniques. During testing the software to be tested is executed on a test set of test cases, selected from the 

input domain, and the results are evaluated. 
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1. INTRODUCTION 
 

Software testing may defined as the process of executing a software system to determine wether the system work according to 

our need and provide desired output. Unlike static verification and validation approaches where software source code is the 

object of analysis, testing requires an executable. Testing is important in development of any software. The quality of any 

software product is checked and ensured through the testing. Testing object oriented-software is slightly different than the 

traditional once. The data is object oriented is wrapped with behaviour. The generation of test cases is a time consuming 

and error prone process because it is done by manually. To automate this process, search-based software testing offers a 

possible solution, which is based on meta-heuristic search techniques, evolutionary algorithm etc. 

The focus of this paper is test data generation approaches for object-oriented software using evolutionary algorithms. To 

reach to a research proposal in test data generation approaches for object-oriented software, we begin, in section 2- give 

brief introduction about Unit Testing of Conventional Procedure-Oriented Software This is followed by an introduction to 

the object-oriented software testing, , in section 3.In section 4, explain the different search techniques used in test data 

generation for object oriented systems. In section 5, give the introduction about genetic algorithm so that we can use in 

object oriented system. Section 6 and 7, motivation and research objective is describes. Finally, the conclusion is outlined 

in last section. 

 

 

2. UNIT TESTING OF CONVENTIONAL PROCEDURE-ORIENTED SOFTWARE 
Much of the research in testing conventional, procedure-oriented, systems has focused on test case selection for testing 

individual modules, i.e., single procedures or functions, at the unit level (Zhu 1997). Furthermore, ever since Goodenough 

and Gerhart (Goodenough 1975) pointed out that the limitations of testing - testing can never be s white box criteria, i.e., 

control flow (Zhu 1997) and data flow criteria (Rapps 1985, Frankl 1988). The definitions of these adequacy criteria are 

based on the flow graph of the program structure - a directed graph in which nodes represent linear sequences of statements 

and edges represent transfer of control. Control flow criteria use the control flow graph directly to specify test requirements 
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whereas data flow criteria use a data flow information augmented control flow graph. The actual description of the data 

flow testing methods is based on the investigation of the ways in which values are associated with respective variables and 

how these associations can influence the execution of the program. Another class of criteria is the fault-based criteria. 

These criteria measure the quality of a test set according to its ability to detect specific faults. This idea of generating test 

cases to detect specific faults led to the definition of mutation analysis and mutation testing (DeMillo 1978). 

 

 

3. OBJECT-ORIENTED SOFTWARE TESTING 
For large object-oriented software also, testing begins with unit testing and ends up with acceptance testing. However, the 

encapsulation of data and functions, as it exists in objects, results in a different interpretation of the first two levels of testing 

which is as follows:   

(a)  Object-Oriented unit testing is testing (i) a single member function of a class or a non-member function, and (ii) a single 

class of objects.  

(b)  Object-Oriented integration testing, involves: (i) testing behavioral dependencies or interactions in collaborations of 

class instances, which is also referred to as cluster testing, and (ii) subsystem integration testing. 

This reinterpretation brings into focus a very fundamental question: “Is the testing of object-oriented software different 

from testing non-object-oriented software?” Although there exists a general agreement that it is different (Binder 1995), 

researchers have tried, with a fair degree of success, to adapt conventional software testing techniques to testing object-

oriented software (Zweben 1992, Parrish 1993, Offutt 1995). 

 

 

4. SEARCH TECHNIQUES USED IN TEST DATA GENERATION  
In this section, we review the search techniques for the generation of test data. 

A. Meta-heuristic Search Techniques  

Meta-heuristic search methods are top level structure which uses heuristics to find solutions to problems without the need 

to perform a full exhaustive enumeration of a search space. They are therefore well suited for combinatorial problems for 

finding good solutions of fair computational cost. These type of problem have been classified under NP- complete and NP- 

hard problem or algorithm based on polynomial time are in existence but not have any practical implementation are done.. 

These frameworks are not standalone algorithms in their own right, but rather “strategies” that are ready for adaptation to 

particular problems. A good encoding will ensure that candidate solutions sharing a number of similar properties will be 

“neighbors” in encoded solution space. Another key decision is the definition of a problem-specific objective function, 

which the search uses as a guide to the quality of candidate solutions. 

 

B. Hill climbing 

Hill climbing is a popular technique for local search . In hill climbing, initial solution is randomly chosen from the search 

state space as a initial point for start searching. The neighbors’ of this initial solution is explored. It replaces the current 

solution, if a better solution is found. The neighbors’ of the new solution is then explored. Again current solution is 

replaced if the better solution is found and so on, till no other better solution neighbor found for the current solution.  

In a “steepest ascent” climbing strategy, all neighbors’ are evaluated, with the neighbor offering the greatest improvement 

chosen to replace the current solution. In a “random ascent” strategy neighbors are examined at random and the first 

neighbor to provide an improvement get selected.  

Hill climbing is simple and gives fast conclusions. It is easy for Hill climbing search to obtain sub optimal solution when 

it leads to local optimal solution but global optimal solution. In such problems, at the peak of a hill the search becomes 

trapped, not able to explore other point of area of the state search space. The exploring will stuck along plateau in the 

landscape. In such circumstances, no neighboring solution is deemed to provide an improvement over the current solution, 

since they all have a same point of value. The highly dependent results found in the hill climbing in non-trivial 

landscapes. 

A common extension to this algorithm is to incorporate with to restart again with different starting solutions, to sample 

more of the search space and minimize this problem as much as possible. 

 

C. Simulated Annealing  

Simulated annealing originates from the technique of chemical process of annealing. If the material of solid type heated at 

its melting point and again cooled down and gets back into solid state then the structural based properties of cooled solid 

material depend on the rate of cooling.   

It is important to have a less dependent search framework on the starting solution. The working principle of simulated 
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annealing is same as hill climbing. Simulated annealing restricts the movement around the search space and accept 

probabilistically poorer. The probability of selecting p of a minor solution changes as the search get advance, and is 

calculated as: 

                                       p = e
−
 
δ
t 

Where δ is the difference in objective value between the current solution and the neighboring solution being considered, 

and temperature t is a control parameter. According to a cooling schedule the temperature gets cooled. In starting to 

remove the dependency on the starting solution and to allow free movement in search space the temperature should be 

high at initial stage. As we continue the search, the temperature gets decreased. If cooling is fast then not enough search 

space is investigated and chances of search get increased to stuck in local optima.  

 

D. Evolutionary Algorithms  

Evolutionary algorithm is a search strategy based on the simulated evolution to evaluate the candidate solution by using 

operators of genetics and natural selection.Genetic algorithm is the most popular method of evolutionary algorithm given 

by John Holland late sixties. Genetic algorithm based on the natural genetic evolution strategies. 

In genetic algorithm, the search is based on the recombination mechanism between individuals to create new individuals 

and uses mutation for some modification in the solutions. This recombination mechanism and mutation method was 

developed independently and now in recent work both ideas gets combine to create a better solution. 

 

 

5. GENETIC ALGORITHM 
 

Genetic algorithm inspired from natural or biological evolution. Genetic algorithm based on the encoding of candidate 

solutions and genetic chromosome. Solutions are also known as individuals or chromosomes. They are called search 

problems used to solve optimization problem.  

The part of the solution is known as genes. Position of gene in chromosome has specified location called locus. In genetic 

algorithm the encoded structure for the solution is called the genotype and the decoded structure known as the phenotype. 

Many applications genetic algorithm the genotype is used as a string of binary digits. In a population each Individuals 

compete for resources. Those individuals which get success in each competition will generate more offspring than those 

individuals that not perform well. Those individuals having high fitness function will become more for the environment. 

The population performs crossover and mutation to produce optimized solution and successive populations known as 

generations. 

The crossover operator produce two offspring by taking  two parent from the population based on fitness value. In single 

crossover, two new is produce by chossing random point for recomibination. A recombination of two individuals 

1101100100110110 and 1101111000011110in encoded form, with a single-point crossover chosen to take place at locus  

 

11011 0    00100110110                          1101111000011110  

   

11011       11000011110 1101100100110110 

   

 

Crossover produces two offspring. Multiple point crossover operators perform a recombination by choosing a fixed 

position.  
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Fig1. Genetic Algorithm Cycle 

 

There are various mechanism for the selection of individuals used to create offspring for the next generation. The main 

focus on selection is the fitness function the individuals. Fitness function of an individual is the value obtained from the 

objective function or the scaled value. The idea of selection is to favor the fitter individuals. If the strategy is too weak 

then it will result in more exploration  

Roulette wheel selection is a common selection method in genetic algorithm .In this method each individual is allocated a 

slice of the wheel based on the fitness function. The wheel is then spun N times in order to pick N parents. At the end of 

each spin, the position of the wheel marker denotes an individual selected to be a parent for the next generation. 

Linear ranking of individuals is a technique which proposes to circumvent this problem. Individuals are sorted by fitness, 

with selection done by providing rank, instead of direct use of fitness values. A linear ranking mechanism with bias Z, 

where 1 < Z ≤ 2, allocates a selective bias of Z to the top individual, a bias of 1.0 to the median candidate, and 2 − Z to the 

bottom candidate. Throughout the search constant bias is applied, selective pressure is more constant and controlled 

[Whi89]. 

Tournament selection is a noisy but fast rank selection algorithm. The population is not arranging according to fitness 

function. Two individuals are chosen at random from the population. A random number, 0 < r ≤ 1, is then chosen. If r is 

less than p (where p is the probability of the better individual get selected), the two individuals having highest fitness 

function wins and chosen to be a parent, otherwise the less fit individual is chosen. The competing individuals are 

returned to the population for further possible selection. This is repeated N times until the required number of parents 

have been selected. In all probability, every individual is sampled twice, with the best individual selected for reproduction 

twice, the median individual once, with the worst individual remaining unselected. The resulting selective bias is 

dependent on p. If p = 1, then in all probability a ranking with a bias of 2.0 towards the best individual is produced. If 0.5 

< p ≤ 1, then the bias is less than 2.0. 

Once the set of parents has been selected, recombination can take place to form the next generation. Crossover is applied 

to individuals selected at random with a probability pc (referred to as the crossover rate or crossover probability). If 

crossover takes place, the offspring are inserted into the new population. If crossover does not take place, the parents are 

simply copied into the new population. After recombination, a stage of mutation is employed, which is responsible for 

introducing or reintroducing genetic material into the search, in the interests of maintaining diversification. This is usually 

achieved by flipping bits of the binary strings at some low probability rate pm, which is usually less than 0.01. 

 

 

6. MOTIVATION OF THE PROBLEM 
Meta-heuristic search technique used for the generations of test data increases the interest of researcher in recent years. 

Today, the search techniques apply to test data generation has mainly focused on generating inputs based on input-output 

behavior for test objects. The main of work is to extend the method with state behavior for test objects. This work has 

several challenges because test goals require input sequences based on state test objects. Next problem is the use of 
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internal variable in generating test data such as counters, flags and enumerations. These variables are in charge of 

organizing the state of the test object. But the use of these internal variables leads to loss of information with respect to 

original input conditions that fulfill the certain goals. Due to this search receive less information and get failed in finding 

test data. 

The work proposes an evolutionary test data generation approach that allows generating input sequences and dealing with 

the internal variables through chaining approach and hybridization method. The main idea of chaining approach to find 

input sequence with the involvement of input variables which need to executed for test goals. These input sequences are 

executed and used in past unavailable information for search and guide the promising and unexplored areas of test objects. 

The experiment performs show the value for the test objects in state and input output behavior. Branch coverage are 

obtained for all test objects. 

In test objects present two major challenges for evolutionary structural test data generation: 

 

A. Input Sequences 

The standard evolutionary approach generates input vectors for single function calls. Test objects with states may require a 

sequence of calls to be generated in order for certain structures to be covered. This sequence may include calls to several 

different functions. Take the example of the C module representing a stack. In order to cover the statements that remove an 

element from the top of the stack - nodes b and c in the pop function - the push function needs to have first been called to 

put an element onto the stack, because initially, the stack is empty. 

The state of the stack is managed by the elements array These state variables are declared using the static C keyword, 

which hides them from external calling processes. Therefore, the state of the stack can only be changed by invoking its 

visible functions. When the stack is empty, no calls to pop alone will lead to nodes b and c being executed. A state variable 

of a test object is an internal variable whose value is retained after the termination of a function of the test object until a 

function of the test object is next called. 

 

B. Internal Variable Problem 

The internal variables used in the conditions of programs can result in a degree of “information loss” when computing 

branch distance values, producing coarse or flat objective function landscapes for target structures within the program. This 

will turn the results for receiving less instruction about the search, making it less likely - if not impossible - that the 

required test data will be found. The degree of “difficulty” for the search depends on the level of information lost, which in 

turn depends on the type of the internal variable. Some internal variables only result in a small amount of information loss, 

which may not affect the success of the search. 

Test data is generated for atomic function calls. However functions and part or element of top system levels can store 

internal data, and can exhibit different behaviors based on the state of that data. This presents new challenges to the test 

data generation method. The first challenge is to generate a sequence of inputs to the test object, since certain program 

structures may require the test object to be in a particular state in order for them to be covered. For example, statements 

popping a value from a stack would not normally be covered unless the stack was in a non-empty state. The second 

challenge involves the problem of internal variables. State-based test objects by their very nature contain internal variables 

in order to manage their state. This can become problematic when internal variables like flags are used to manage or query 

the state, because the search may have difficulties in finding input sequences in order to cover certain structures within the 

program. In this work for internal variable problem various solutions obtained. Chaining approach is one possible solution 

for internal variable problem. The main idea of the chaining approach is to identify a sequence of statements that need to be 

executed prior to the target structure. These statements involve assignments to internal variables. They are executed, for 

information previously unavailable to the search, possibly guiding for unexplored areas of the test object’s input domain. In 

this way, the chances of finding input data to troublesome structural targets may be improved. 

 

 

7. CONCLUSION 
 In this paper, we discuss about the different techniques for the generation of test data. Test data for testing object oriented 

software includes test program which form and change the objects in order to achieve a certain aim. The work in the field 

of search-based structural test data generation has largely focused on the testing of individual program functions with 

input-output behavior. The approach described in this paper facilitates the automatic generation of test data for object 

oriented system using genetic algorithms.  
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