
Vol-5 Issue-3 2019        IJARIIE-ISSN(O)-2395-4396 

10252 www.ijariie.com 366 

Survey- Big Data Using Software Quality 

Testing with Techniques & Methodology 

Abstract 
Software testing is a process of verifying and validating that a software application or program works as per the 

user’s expectations. It is used to find out the important defects, flaws, or errors in the application code. In this paper 

we have developed a tool to generate different test cases automatically. In Model Based Testing (MBT), test cases 

are generated automatically from a partial representation of expected behavior of the System under Test (SUT) (i.e., 

the model). For most industrial systems, it is impossible to generate all the possible test cases from the model. The 

test engineer recourse to generation algorithms that maximize a given coverage criterion, a metric indicating the 

percentage of possible behaviors of the SUT covered by the test cases. Our previous work redefined classical 

Transition Systems (TSs) criteria for SPLs, using Featured Transition Systems (FTSs), a mathematical structure to 

compactly represent the behavior of a SPL, as model for test case generation. In this paper, we provide one all-

states coverage driven generation algorithm and discuss its scalability and efficiency with respect to random 

generation. All-states and random generation are compared on fault-seeded FTSs. 

 

Keywords—Software Testing, Verification, Validation, Test Cases, Boundary Value Analysis,Equivalence Class 

Partition, Agile Method. 

 
Introduction  
 

With the growing complexity of today's software applications injunction with the increasing competitive pressure 

has pushed the quality assurance of developed software towards new heights. Software testing is an inevitable part 

of the Software Development Lifecycle, and keeping in line with its criticality in the pre- and post-development 

process makes it something that should be catered with enhanced and efficient methodologies and techniques. This 

paper aims to discuss the existing as well as improved testing techniques for the better-quality assurance purposes. 

In the place of traditional principle of project management, a strategic management philosophy is emerging fast in 

which writing better test cases also receive the widespread attention of all those interested in software project 

management and software testing. In the current scenario managing software is an important task in an IT industry. 

Not only managing IT project, but also it is needing to develop quality software product for the customer. It includes 

the number of tasks and phases of the software project development. Testing is one of the phases, which is most 

important in project management. In software testing writing test cases is very important. So, it is necessary to study 

how to write better test cases. This paper describes how to avoid loses that is inevitable with poor test cases.. Case 

study tries to give an insight about how to use test cases to improve testability and productivity, how to solve 

familiar challenges to test case quality and how to protect test case assets, which can be in practice in the software 

industry [1]. 

A test case is a set of conditions under which a tester will determine that an application, functionality, or software is 

working as expected. The test case has preconditions, steps, and an expected result. Test cases focus on testing small 

pieces of functionality. Testing is defined as a process of evaluation that either the specific system meets its 

originally specified requirements or not. It is mainly a process encompassing validation and verification process that 

whether the developed system meets the requirements defined by user. Therefore, this activity results in a difference 

                                                

 

                              Priya shah 

                         Assistant professor 

                              Department of computer application 

                            Patel Group of Institutions, GTU Mehsana (Gujarat, India) 
 

 

  

  

  

  

  



Vol-5 Issue-3 2019        IJARIIE-ISSN(O)-2395-4396 

10252 www.ijariie.com 367 

between actual and expected result. Software Testing refers to finding bugs, errors or missing requirements in the 

developed system or software.  

 
 

 

Case Study of Test Cases 
 

Test Case is a commonly used term for a specific test. This is usually the smallest unit of testing. 

A Test Case will consist of information such as requirements testing, test steps, verification steps, prerequisites, 

outputs, test environment, etc. 

A test case is a detailed procedure that fully tests a feature or an aspect of a feature.  

Organizations take a variety of approaches to documenting test cases; these range from developing detailed, recipe-

like steps to writing general descriptions. In detailed test cases, the steps describe exactly how to perform the test. In 

descriptive test cases, the tester decides at the time of the test how to perform the test and what data to use. 

This is particularly important if you plan to compare the results of tests over time, such as when you are optimizing 

configurations. Detailed test cases are more time-consuming to develop and maintain. On the other hand, test 

cases that are open to interpretation are not repeatable and can require debugging, consuming time that would be 

better spent on testing. 

When planning your tests, remember that it is not feasible to test everything. Instead of trying to test every 

combination, prioritize your testing so that you perform the most important tests those that focus on areas that 

present the greatest risk or have the greatest probability of occurring first. Once the Test Lead prepared the Test 

Plan, the role of individual testers will start from the preparation of Test Cases for each level in the Software Testing 

like Unit Testing, Integration Testing,  

The bolded words should be replaced with the actual Project Name, Version Number and Release Date. We have 

company emblem and we will fill the details like Project ID, Project Name, Author of Test Cases, Version Number, 

Date of Creation and Date of Release in this Template. And we will maintain the fields Test Case ID,  

Test Case ID: To Design the Test Case ID also we are following a standard: If a test case belongs to application not 

specifically related to a Module then we will start them as TC001, if we are expecting more than one expected result 

for the same test case then we will name it as TC001.1. If a test case is related to Module then we will name it as 

M01TC001, and if a module is having a sub-module then we name that as M01SM01TC001. So that we can easily 

identify to which Module and which sub-module it belongs to. And one more advantage of this convention is we can 

easily add new test cases without changing all Test Case Number so it is limited to that module only 

Requirement Number: It gives the reference of Requirement Number in SRS/FRD for Test Case. For Test Case we 

will specify to which Requirement it belongs to. The advantage of maintaining this one  

 here in Test Case Document is in future if a requirement will get change then we can easily estimate how many test 

cases will affect if we change the corresponding Requirement. 

Version Number: Under this column we will specify the Version Number, in which that test case was introduced. So 

that we can identify finally how many Test Cases are there for each Version. 

Type of Test Case: It provides the List of different type of Test Cases like GUI, Functionality, Regression, Security, 

System, User Acceptance, Load, Performance etc  

Test Case Name: This gives more specific name like Button or text box name, for which that Test Case belongs to. I 

mean to say we will specify the Object name for which it belongs to. For egg., OK button, Login form. 

Action: This is very important part in Test Case because it gives the clear picture what you are doing on the specific 

object. We can say the navigation for this Test Case. Based the steps we have written here we will perform the 

operations on the actual application. 

Expected Result: This is the result of the above action. It specifies what the specification or user expects from that 

action. It should be clear and for each expectation we will sub-divide that Test Case.. 

 

Actual: We will test the actual application against each Test Case and if it matches the Expected result then we will 

say it as "As Expected" else we will write the  what happened after doing those action. 

Status: It simply indicates Pass or Fail status of that Test Case.  

 

 

 

 

 



Vol-5 Issue-3 2019        IJARIIE-ISSN(O)-2395-4396 

10252 www.ijariie.com 368 

Format of Standard Test Cases 
Optionally you can have the following fields depending on the project requirements 

 Link / Defect ID: Include the link for Defect or determine the Defect number if test status is fail 

 Keywords / Test Type: To determine tests based on test types this field can be used. Egg: Usability, 

functional, business rules, etc. 

 Requirements: Requirements for which this test case is being written 

 References / Attachments: It is useful for complicated test scenarios, give the actual path of the document 

or diagram 

 Automation (Yes/No): To track automation status when test cases are automated 

 Custom Fields: Fields your project being tested due to client/project requirements. 

Table of Test Cases. 

 

                                   

Use Technics- 

There are using two technics: - 

1) Boundary Values Analysis. 

2) Equivalence Class Partitioning.  

Boundary Values Analysis 
Boundary testing is the process of testing between extreme ends or boundaries between partitions of the input 

values. 

The basic idea in boundary value testing is to select input variable values at their:                                                                       

1. Minimum 

2. Just above the minimum 

3. A nominal value 

4. Just below the maximum 

5. Maximum 

https://www.guru99.com/the-unconventional-guide-to-defect-management.html
https://www.guru99.com/the-unconventional-guide-to-defect-management.html


Vol-5 Issue-3 2019        IJARIIE-ISSN(O)-2395-4396 

10252 www.ijariie.com 369 

 

Fig.1. Figure of BVA. 

 

In Boundary Testing, Equivalence Class Partitioning plays a good role 

  

Equivalent Class Partitioning 

Equivalent Class Partitioning is a black box technique (code is not visible to tester) which can be applied to all 

levels of testing like unit, integration, system, etc. In this technique, you divide the set of test condition into a 

partition that can be considered the same. 

Case 1:  

Equivalence and Boundary Value Let's consider the behaviour of tickets in the Flight reservation application, while 

booking a new flight. 

 

Fig. 2. Figure of ECP & BVA. 

Ticket values 1 to 10 are considered valid & ticket is booked. While value 11 to 99 are considered invalid for 

reservation and error message will appear, "Only ten tickets may be ordered at one time." 

 

Fig. 3 Figure of ECP. 

 

 

https://cdn.guru99.com/images/3-2016/032316_0620_Equivalence1.png
https://cdn.guru99.com/images/3-2016/032316_0620_Equivalence2.png
https://cdn.guru99.com/images/3-2016/032316_0620_Equivalence3.png


Vol-5 Issue-3 2019        IJARIIE-ISSN(O)-2395-4396 

10252 www.ijariie.com 370 

Here is the test condition 

1. Any Number greater than 10 entered in the reservation column (let say 11) is considered invalid. 

2. Any Number less than 1 that is 0 or below, then it is considered invalid. 

3. Numbers 1 to 10 are considered valid 

4. Any 3 Digit Number say -100 is invalid. 

we use equivalence partitioning hypothesis where we divide the possible values of tickets into groups or sets as 

shown below where the system behaviour can be considered the same. 

 

Fig. 4 Figure of  ECP. 

Then we pick only one value from each partition for testing. The hypothesis behind this technique is that if one 

condition/value in a partition passes all others will also pass. Likewise, if one condition in a partition fails, all other 

conditions in that partition will fail. [2] 

 

Fig. 5 Figure of BVA & ECP. 
 

Boundary Value Analysis- in Boundary Value Analysis, you test boundaries between equivalence partitions. 

 

Fig. 6 Figure of BVA. 

 

In our earlier example instead of checking, one value for each partitions you will check the values at the partitions 

like 0, 1, 10, 11 and so on. As you may observe, you test values at both valid and invalid boundaries.  

Case 2: 

Equivalence and Boundary Value 

Suppose a password field accepts minimum 6 characters and maximum 10 characters  

https://cdn.guru99.com/images/3-2016/032316_0620_Equivalence4.png
https://cdn.guru99.com/images/3-2016/032316_0620_Equivalence5.png
https://cdn.guru99.com/images/3-2016/032316_0620_Equivalence6.png


Vol-5 Issue-3 2019        IJARIIE-ISSN(O)-2395-4396 

10252 www.ijariie.com 371 

That means results for values in partitions 0-5, 6-10, 11-14 should be equivalent 

 

 
                      Table of Test Cases Scenario. 

Test 

Scenar

io # 

Test Scenario 

Description 

Expected 

Outcome 

1 Enter 0 to 5 

characters in 

password field 

System should 

not accept 

2 Enter 6 to 10 

characters in 

password field 

System should 

accept 

3 Enter 11 to 14 

character in 

password field 

System should 

not accept 

                             

Case 3: 

Input Box should accept the Number 1 to 10 

Here we will see the Boundary Value Test Cases. 
 

         Table of Test Design Scenario. 

Test Scenario 

Description 

Expected Outcome 

Boundary Value = 0 System should NOT 

accept 

Boundary Value = 1 System should accept 

Boundary Value = 2 System should accept 

Boundary Value = 9 System should accept 

Boundary Value = 10 System should accept 



Vol-5 Issue-3 2019        IJARIIE-ISSN(O)-2395-4396 

10252 www.ijariie.com 372 

Boundary Value = 11 System should NOT 

accept 

 
       

Why Equivalence & Boundary Analysis Testing 
1. This testing is used to reduce very large number of test cases to manageable chunks. 

2. Very clear guidelines on determining test cases without compromising on the effectiveness of testing. 

3. Appropriate for calculation-intensive applications with substantial number of variables/inputs 

 

Summary: 
Boundary Analysis testing is used when practically it is impossible to test large pool of test cases individually Two 

techniques - Equivalence Partitioning & Boundary Value Analysis testing techniques is used 

In Equivalence Partitioning, first you divide a set of test condition into a partition that can be considered. 

In Boundary Value Analysis you then test boundaries between equivalence partitions Appropriate for calculation-

intensive applications with variables that represent physical quantities 

 

Method- 

 
Agile Model 

Agile methods took over the traditional methods, to overcome the rigidity of the traditional model. Agile follows a 

dynamic approach to software development. It is an interactive and team based method that aims to deliver an 

application in a short span of time. [4] 

In agile methodology, tasks are categorised into phases and are ''time-boxed'', that is, time frames are allotted to each 

task. Each time-boxed phrase is called a sprint. Each sprint has a defined duration of time, say, a week, few days or 

month. 

 
Fig. 7.  Figure of agile Model. 

 



Vol-5 Issue-3 2019        IJARIIE-ISSN(O)-2395-4396 

10252 www.ijariie.com 373 

Agile is based on empirical process, which provides a control mechanism based on a defined set of methods. 

Empirical method is meant for those processes that are not very well defined, unpredictable or unrepeatable. Agile 

technique implements control through frequent inspection and adaptation. 

It has brief iterative life cycles, which reflects periodic changes, and thus integrating slight change cycle to the 

overall system development process. 

Involves communication with customers consistently, taking their feedback as input, during the different iterative 

cycles. [3] 

Agile Vs Traditional 

Table--Comparison between two models.   

S.No. Traditional Model Agile Model 

1. Follows a top down 

approach, and making 

changes is not easy as 

finishing one phase leads to 

another 

Team conducts 

experiments on 

various 

techniques and 

gradually 

arrives at the 

best possible 

solution 

2. It has a leadership style of 

working 

In agile, there is 

free flow of 

communication, 

anyone can 

present their 

ideas within the 

team 

3. Pre-planning is done to carry 

out the various phases 

This is more 

flexible as 

compared to 

traditional 

model, as it can 

change its work 

flow based on 

any new 

request for 

modifications 

4. Customer is involved only in 

the initial phases of 

requirements gathering 

Customer 

involvement is 

crucial for this 

model to prove 

its mettle 

5. The project plan is prepared 

before commencing the 

process of system 

development 

Project work is 

delivered to the 

client in small 

amount, that is, 

as and when 

one module is 

prepared, a 

demonstration 

is given to the 



Vol-5 Issue-3 2019        IJARIIE-ISSN(O)-2395-4396 

10252 www.ijariie.com 374 

client, to 

confirm the 

work progress 

in a right 

direction 

6. The ownership lies on the 

Project manager 

It has the 

concept of 

shared 

ownership, i.e, 

every team 

member is 

equally 

responsible for 

their individual 

contribution 

7. Believes in one-time delivery 

of the product 

Relies on 

incremental 

delivery of the 

product 

                           
 

Both agile and traditional models are essential for an efficient software development process.  

Agile Model does overcome few deficiencies that the traditional model imbibes, but at the same time each model's 

pros and cons must be weighed before reaching a consensus. 

 

Conclusion: 
There are substantial numbers of people, which are being victimised by the myths, associated with software testing, 

and consider testing, inferior to the development process. However, the truth is very much different. Testing phase is 

as important as the development phase. Similar, to the development process, testing is a wider concept that 

encompasses numerous types of activities. 

 
 

References 
[1]. Neha Kumawat, Yashika Sharma, Urmila Pilania, Comparative Study between Equivalence Class Partitioning 

and Boundary Value Analysis Testing Methods, © March 2016 | IJIRT | Volume 2 Issue 10 | ISSN: 2349-6002.    
 

[2]. Patrcia Frankovaa, Martina Drahosovab, Peter Balcoa, Agile project management approach and its use in big 

data management,7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)   
 

[3]. Harmeet Kaur, Shahanawaj Ahamad, Gurvinder N. Verma, Identification & Analysis of Parameters for Program 

Quality Improvement: A Reengineering Perspective, Computer Engineering and Intelligent Systems Vol.4, No.5, 

2013. 
 

[4]. Rashmi Popli, Design of Sprint Point Based Estimation Techniques for Agile Software, YMCA University of 

Science and Technology 
 

[5]. Shishank Gupta, Parametric Test Optimization, Infosys.  

[6]. Reference Book from Guru.99. 

 

 

http://www.professionalqa.com/waterfall-model

