Swear Detection And Prevention System using Typeahead Script

Sayli Ambulkar1, Rita Jadhav2, Meena Borkar3, Pranay Irdande4

1 Student, Information Technology, RGCER, Maharashtra, India
2 Student, Information Technology, RGCER, Maharashtra, India
3 Student, Information Technology, RGCER, Maharashtra, India
4 Student, Information Technology, RGCER, Maharashtra, India

ABSTRACT

Internet becomes more popular in the day to day activities of users. In recent years online social networks (OSN) also increased rapidly. The users can communicate and share their views and content through online social networking services (OSN). The sharing between the users should be several types of content like image, audio, video etc. The main draw-back of these Online Social Networking (OSN) services is the lack of privacy for the users own private space. The users can’t have the ability to direct control to prevent the undesired messages posted on their own private walls. Online Social Networks (OSN) becomes an important part of many people life today. So Online Social Networks (OSN) should be highly secured to prevent the individual’s privacy. Up to now the Online Social Network (OSN) provides the security measures are limited. To filter the unwanted messages, in this work proposed an enhanced filtering system by using machine learning technique based on a content filtering.

Keyword: - Online Social Networks, machine learning, content filtering

1. INTRODUCTION

The aim of the present work is therefore to propose and experimentally evaluate an automated system, called Filtered Wall (FW), able to filter unwanted messages from OSN user walls. The major efforts in building a robust short text classifier are concentrated in the extraction and selection of a set of characterizing and discriminate features. The solutions investigated in this paper are an extension of those adopted in a previous work by us from whom we inherit the learning model and the elicitation procedure for generating pre-classified data. The original set of features, derived from endogenous properties of short texts, is enlarged here including exogenous knowledge related to the context from which the messages originate. The role of interface design is to reconcile the differences that prevail among the software engineers design model. The designed system meets the end user requirement with economical way at minimal cost within the affordable price by encouraging more of proposed system. Economic feasibility is concerned with comparing the development cost with the income/benefit derived from the developed system. In this we need to derive how this project will help the management to take effective decisions. As far as the learning model is concerned, we confirm in the current paper the use of neural learning which is today recognized as one of the most efficient solutions in text classification. In particular, we base the overall short text classification strategy on Radial Basis Function Networks (RBFN) for their proven capabilities in acting as soft classifiers, in managing noisy data and intrinsically vague classes. The architecture of OSN services is a three-tier structure of three layers.

2. Scope And Objective Scope:

• Online Social Networks enables its users to keep in touch with friends by exchanging several type of content including text, audio and video data.

• To control the messages posted on their own private space to avoid that unwanted content is displayed. Objectives:

• To design an online message filtering system that is deployed at the OSN service provider side.
To consider the challenges in short text classification and filtering criteria while publishing messages on user wall.

Once deployed, to inspect every message before rendering the message to the intended recipients and makes immediate decision on whether or not the message under inspection should be dropped.

3. Modules

- Login
- Home Page
- Friend Request
- Blacklists Script

Module 1: Login and Registration:

In this module, user can register their details like name, password, gender, age, and then. Here the user can make friends by accept friend request or send friend request. They can share their status by messages also share videos with friends and get comments from them.

![Login Page](image1)

![Sign Up](image2)

Fig -1: Login Page
Module 2: Home Page:

Module 3: Friend Request:

Search Friends: Here they can search for a friend and send a request to them also can view their details. Accept Request: In this Module, Accept the friend request along with category. Share Comments: They can share videos with their friends by adding comments they share their status by sending messages to friends. After type abused word in comment box the POST button is disabled.
Module 4: Blacklists Script:

4. Implementation Steps (Algorithm/Code)

Login and Registration Steps:
1. User is connected to Messenger (OSN system)
2. take Input as a username and password from user.
3. If user enter correct username and password then login successfully Otherwise re-entered.
4. Once user connected to Messenger, user gives input to module2 (Home Page)
5. LITERATURE SURVEY

In paper, Information filtering is the process of providing appropriate information to the people who need it. It significantly searches for what actually concerns the textual document, specifically web contents, and offers a user with classification mechanism to avoid the unnecessary information. This information filtering process is used in the online social network for insightful objective. To facilitate the content based filtering, this article introduces the filtered wall architecture. It will filter the incoming post based on the content.

The main goal of this system is to provide customizable content based message filtering for online social networks, based on machine learning techniques. Information Filtering Systems are designed to categorize the information which are generated dynamically and offer the information to the user fulfill their requirement. In the content Based Filtering system, each user is assumed to operate separately.

So the filtering system selects the information based on the correlation between the content of the items and user preferences. To support the content based filtering in online social network, Filtered wall architecture is introduced.

6. PROPOSED SYSTEM

An automated system called filtering wall that is able to filter unwanted messages from OSN user walls. Our contribution is that we are going to implement real time system using Messenger app. The project is to develop a system that is going to block the POST button if unwanted messages are found in OSN user’s wall. Now we are implementing the software which is going to work for filtering messages/comments in the form of a text, so in future we can extend our project scope to filter images, audio, video format or filtering. Paragraphs must be justified, i.e. both left-justified and right-justified.

7. CONCLUSION

In this paper, we have presented a system to block the POST button if unwanted messages are found in OSN user’s walls. The flexibility of the system in terms of filtering options is enhanced through the management of BLs. This is the first step of a wider project. The early motivating results we have obtained on the classification procedure instigate us to continue with other work that will aim to enhance the quality of classification. In particular, future plans contemplate an extensive investigation on two interdependent tasks. The current batch learning strategy, based on the preparatory collection of the entire set of labeled data from experts, allowed an accurate experimental evaluation but needs to be developed to include new operational requirements. The development of a GUI and a set of related tools make easier BL and FR specification is also we plan to investigate, since usability is a key requirement for such kind of applications.

8. REFERENCE

