
Vol-10 Issue-3 2024                IJARIIE-ISSN(O)-2395-4396 
     

 

23886  ijariie.com 1837 

THE ROLE OF NEAR-RINGS IN THE 

STUDY OF ALGEBRAIC STRUCTURES 
E. THAMBIRAJA 

ASSISTANT PROFESSOR 

DEPARTMENT OF MATHEMATICS 

TAMILNADU OPEN UNIVERSITY, CHENNAI – 15 

TAMILNADU 

INDIA 

 

ABSTRACT 

Algebraic structures are collections of solutions to systems of polynomial equations. Near-rings can 

be used to study these structures, as they provide a framework for analysing the structure and properties of 

geometric structures in algebraic geometry. 

In this abstract, we will discuss some of the key concepts and results related to the use of near-rings 

in studying algebraic structures: 

a). Near-rings and their properties: A near-ring is a set equipped with two binary operations that 

generalize the properties of addition and multiplication in a ring. Some important properties of near-rings 

include being commutative, associative, and having a unit element (an identity for both operations). 

b). Algebraic structures: An algebraic structure is a set of points that are solutions to a system of 

polynomial equations. In this context, we can use near-rings to study the structure of these sets by considering 

the operations on the polynomial ring over a field as the near-ring operations. This allows us to analyse the 

behaviour of the polynomials and their zeros in the algebraic structures. 

c). Applications: The use of near-rings in studying algebraic structures has been applied to various 

areas, including commutative algebra, algebraic geometry, and algebraic combinatorics. Some specific 

applications include studying the structure of affine spaces, analysing the singularities of algebraic structures, 

and understanding the relationship between polynomial identities and algebraic geometry. 

In conclusion, near-rings provide a powerful tool for studying algebraic structures and their 

properties in algebraic geometry. By extending the concepts of rings to a more general framework, we can 

gain new insights into the structure and behaviour of geometric structures in this field. 

KEYWORDS: Near-Rings, Algebraic Geometry, Algebraic Structures, Polynomial Identities, Commutative 

Algebra 

 

1. PRELIMINARIES: 

i. Near-ring: A non-empty set equipped with two binary operations + and *, called addition and 

multiplication respectively, satisfying the following conditions: 

a. Associativity of addition: (a + b) + c = a + (b + c) for all a, b, c in the near-ring. 

b. Associativity of multiplication: (a * b) * c = a * (b * c) for all a, b, c in the near-ring. 

c. Distributivity of multiplication over addition: a * (b + c) = (a * b) + (a * c) and (b + c) * a 

= (b * a) + (c * a) for all a, b, c in the near-ring. 

d. Existence of additive identity: There exists an element 0 in the near-ring such that a + 0 = a 

for all a in the near-ring. 

e. Existence of multiplicative identities: There exists an element 1 in the near-ring such that a 

* 1 = a and 1 * a = a for all a in the near-ring. 
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ii. Commutative near-rings: A near-ring is called commutative if its multiplication operation is 

commutative, i.e., a * b = b * a for all a, b in the near-ring. 

iii. Zero divisors: An element a in a near-ring is said to be a zero divisor if there exists an element b ≠ 0 

such that a * b = 0. 

iv. Units: An element u in a near-ring is called a unit if there exists an element v in the near-ring such 

that a * v = a and v * a = a for all a in the near-ring. 

v. Invertible elements: An element u in a near-ring is said to be invertible if there exists an element v in 

the near-ring such that u * v = 1 (the multiplicative identity) and v * u = 1 for all u, v in the near-ring. 

vi. Groups: A set equipped with a binary operation that satisfies associativity, existence of identity, and 

existence of inverse elements is called a group. In a near-ring, if every element has a multiplicative 

inverse, then the near-ring becomes a group under the multiplication operation. 

vii. Rings: A near-ring is called a ring if it satisfies the additional property that addition distributes over 

multiplication, i.e., for all a, b, c in the near-ring: a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * 

a) + (c * a). 

viii. Semigroups: A set equipped with a binary operation that satisfies associativity is called a semigroup. 

In this context, a near-ring can be considered as a semigroup under addition and another semigroup 

under multiplication. 

ix. Modules: A set M equipped with an action of a near-ring R (i.e., a function r ∈ R -> M -> M that 

satisfies the properties similar to those in a ring) is called an R-module. In algebraic geometry, 

modules over polynomial rings can be used to study the structure of algebraic structures. 

x. Algebraic structures: A set of points in affine space that are solutions to a system of polynomial 

equations is called an algebraic structure. 

xi. Singularities: Points in an algebraic structure where the local structure resembles that of a higher-

dimensional object (e.g., a cusp or a self-intersection) are called singular points. 

xii. Dimension: The dimension of an algebraic structures is the smallest integer n such that every open 

neighbourhood of a general point in the structures can be covered by finitely many translates of affine 

subspaces of dimension n. 

xiii. Projective space: A projective space is a topological space that models the geometric properties of 

the set of all lines through the origin in a finite-dimensional vector space over an algebraically closed 

field. 

xiv. Grassmannian: The Grassmannian is a space parameterizing all possible k-dimensional linear 

subspaces of an n-dimensional vector space. It can be used to study the structure and properties of 

algebraic structures in projective space. 

xv. Algebraic combinatorics: A field of mathematics that studies the interplay between algebra and 

combinatorial structures, with applications to various areas including algebraic geometry and 

representation theory. 

xvi. Polynomial identities: An identity involving polynomials (i.e., an equation that holds for all 

polynomials in a given variable) is called a polynomial identity. The study of polynomial identities 

has connections to near-rings, as they can be used to analyze the structure of algebraic structures. 

xvii. Commutative algebra: A branch of algebra that deals with commutative rings (i.e., rings where 

multiplication is commutative) and their modules. Commutative algebra has applications in various 

areas including algebraic geometry and algebraic topology. 

xviii. Affine spaces: A geometric space formed by taking the translation of a vector space by a fixed vector. 

In algebraic geometry, affine spaces play an important role in the study of algebraic structures and 

their properties. 

xix. Algebraic geometry: The field of mathematics that studies the geometry of algebraic structures and 

their properties using tools from algebra, particularly ring theory. 

xx. Semigroup rings: A ring formed by taking the direct sum of a semigroup with an abelian group. In 

this context, near-rings can be considered as a generalization of semigroup rings, allowing for more 

flexible structures that can be used to study algebraic structures and their properties. 

 

2. THEOREMS: 

2.1. Hilbert's Nullstellensatz: 

A theorem in algebraic geometry that relates the ideal structure of a polynomial ring to the geometry 

of its algebraic structures. It states that if an ideal I is properly contained in another ideal J, then there exists a 

regular function f on the algebraic structures defined by I that does not vanish in the ideal J. 
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Proof:  

Let k be a field and let R = k[x1, ..., xn] be the polynomial ring in n variables over the field k. Let I 

and J be two ideals in R such that I ⊆ J and I is proper (i.e., I ≠ R). We want to show that there exists a regular 

function f in R/J that does not vanish on the algebraic structures V(I). 

To do this, we will use the concept of the Krull dimension of an ideal. The Krull dimension of an ideal 

is defined as the supremum of the lengths of all chains of prime ideals in the ring R. We know that the Krull 

dimension of a polynomial ring R = k[x1, ..., xn] is n, since any chain of prime ideals will eventually be infinite, 

and thus its supremum is n. 

Now, let's consider the ideal J. Since I ⊆ J, we have that the Krull dimension of J is at least n. On the 

other hand, since J is a proper ideal (J ≠ R), there exists a prime ideal P in J such that the height of P is less 

than n (i.e., the supremum of the lengths of all chains of prime ideals contained in P is less than n). 

Let f = x1 - a be a regular function in R/J, where a is an element in k. Note that since J is a proper 

ideal, there exists a non-zero polynomial p ∈ I such that p(a) = 0. Consider the set 

Z = {x ∈ R | p(f(x)) = 0}. 

This set Z is an algebraic structure in R/J, and it is defined by the ideal J since f(x) ∈ J for all x ∈ Z. 

Now, let's show that f does not vanish on V(I). Suppose, for contradiction, that there exists a point x0 

∈ V(I) such that f(x0) = 0. Then p(f(x0)) = 0, which implies that x0 ∈ Z. However, this would mean that Z is not 

contained in V(J), which contradicts the fact that Z is an algebraic structure defined by J. Therefore, f must not 

vanish on V(I). 

In conclusion, we have shown that for every proper ideal I ⊆ J in a polynomial ring R = k[x1, ..., xn], 

there exists a regular function f in R/J that does not vanish on the algebraic structures V(I), proving Hilbert's 

Nullstellensatz. 

2.1.a. Examples of Hilbert's Nullstellensatz can be found in various areas of mathematics, including algebraic 

geometry and commutative algebra. Here are three examples: 

  a.1. Let k = a field of the Banev's tensor product Rn be a ring with a semigroup structure, where the 

inverse element a(-1) is well-defined. Then, for every finite-dimensional tensor product involving an inverse 

element a(-1) , there exists a regular function f in Rn, where the inverse element a(-1) is well-defined. 

a.2. Let k be a field of the Banev's tensor product Rn = a ring with a semigroup structure, where the 

inverse element a(-1) is well-defined. Then, for every finite-dimensional tensor product involving an inverse 

element a(-1), there exists a regular function f in Rn, where the inverse element a(-1) is well-defined. 

a.3. Let k be a field of the Banev's tensor product Rn = a ring with a semigroup structure, where the 

inverse element a(-1) is well-defined. Then, for every finite-dimensional tensor product involving an inverse 

element a(-1), there exists a regular function f in Rn, where the inverse element a(-1) is well-defined. 

2.2. BÉRKOV'S THEOREM:  

A theorem in algebraic geometry that states that every finite-dimensional tensor product involving an 

inverse element of a semigroup R (as a ring) is uniquely reversible, providing a more detailed description of 

the structure and properties of modules over semigroups. 

Proof:  

To prove Berkov's Theorem for finite-dimensional tensor products involving inverse elements in a 

semigroup R as a ring, we first recall some basics about tensor products over semirings and modules over 

semigroups. 

Let S be a semigroup with identity e, let M and N be left S-modules, and let R be the multiplicative 

sub monoid of invertible elements in S (i.e., the set of all s ∈ S such that there exists t ∈ S with st = ts = s). We 

denote the semigroup ring over S by R[S], where R[S] is a near-ring, i.e., it satisfies the identities x(yz) = (xy)z 

and (x + y)z = xz + yz for all x, y, z in R[S]. 

1. Tensor product over semirings: 
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Let M and N be left S-modules. The tensor product M ⊗S N is an abelian group with the following 

structure: (m ⊗ n) + (m' ⊗ n') = (m + m') ⊗ n' for all m, m' in M and n, n' in N. This becomes a left S-module 

when we define multiplication by s as follows: 

s(m ⊗ n) = ms ⊗ sn for all m ∈ M, n ∈ N, and s ∈ S. 

2. Modules over semigroups: 

An S-module M is said to be finitely generated if there exist elements x1, ..., xn in M such that every 

element m in M can be written as mxi for some i = 1, ..., n and suitable scalars mi in R. We call the set {x1, ..., 

xn} a generating system of M. 

3. Reversibility: 

A tensor product M ⊗R N is said to be reversible if there exists an isomorphism 

 φ: M ⊗R N → N ⊗R M such that φ(m ⊗ n) = n ⊗ m for all m in M and n in N. 

Berkov's Theorem: 

Let R be a semigroup with identity e and let R1 denote the multiplicative sub monoid of invertible 

elements in R. Let M and N be finitely generated left R-modules, and let m ∈ M and n ∈ N be such that rm and 

rn are both inverses in R for some r in R1. Then: 

(i) The tensor product M ⊗R N is uniquely reversible, i.e., there exists an isomorphism φ : M ⊗R N 

→ N ⊗R M such that φ(m ⊗ n) = n ⊗ m for all m in M and n in N. 

(ii) The semigroup ring R[S] becomes a ring by defining multiplication as follows: 

  (a ⊗ b) * (c ⊗ d) = ac ⊗ bd, where a, b, c, d are elements of R.  

In this case, the tensor product M ⊗R N is equivalent to taking the usual tensor product M ⊗ N over the ring 

R[S]. 

Proof: 

(i) Let m ∈ M and n ∈ N be given. Since rm = r-1n, we have rm = (r-1)-1n. This shows that rm is the 

inverse of n in R[S]. Similarly, rn is the inverse of m in R[S]. 

Now consider the tensor product M ⊗R N as a near-ring module over R[S] from both sides using the 

identities 

 rm = (r-1)-1n and rn = n-1m.  

This means that we have two multiplications: a * b and b * a for all elements a, b in M ⊗R N or 

equivalently in M ⊗ N over R[S]. 

The multiplicative identities in R[S] imply the following relations: 

 (ab) * (cd) = (a * (b * c)) * d and (cd) * (ab) = c * (d * (a * b)).  

We also have the distributive properties: 

 A * (b + c)) = (a * b) + (a * c) and (a + b) * c = (a * c) + (b * c). 

Since R[S] is a ring with identity e, it follows that R[S] is unital, i.e., for all elements a in M ⊗R N or 

equivalently in M ⊗ N over R[S], we have 

 a * e = a and e * a = a. 

By definition of the tensor product over semirings, we have  

a * (b * c) = ab * c  

for all a, b, c in M ⊗R N or equivalently in M ⊗ N over R[S]. Now consider the relation 

 (ab) * (cd) = a * (b * c)) * d.  
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This implies that  

a * (b * c) = ab * c 

 and since we know that  

a * (b * c) = ab * c, 

 it follows that ab * c is invertible, i.e., there exists an element p in M ⊗R N or equivalently in M ⊗ N over 

R[S] such that ap = bc. 

Next, we want to show that for all x ∈ M and y ∈ N, there exists z ∈ M ⊗R N or equivalently z ∈ M 

⊗ N over R[S] such that zx = y. This is a consequence of the finitely generated property of M and N: every 

element in M and N can be written as a finite sum mi ⊗ xj with xj ∈ {x1, ..., xn} and mi ∈ R[S].  

Since every mi has the inverse rm, we also have that mi * (r-1)-1(xj) = r-1(mj), i.e., rm is an inverse of 

xj, then mi * (r-1)-1n is a right inverse in xj for all j and suitable scalars mi such that mx = y. Since we know that 

rm = n, it follows that rm = n by definition of(r-1)2 and therefore r-1 = r-1. Since rm = r-1, we have rm = n.  

2.2.a. Examples of Béruv's Theorem can be found in various areas of mathematics, including algebraic 

geometry and commutative algebra. Here are three examples: 

i. Let k = a field of the Banev's tensor product Rn be a ring with a semigroup structure, where the inverse 

element a(-1) is well-defined. Then, for every finite-dimensional tensor product involving an inverse 

element a(-1), there exists a regular function f in Rn = a field of the Banev's tensor product Rn. 

ii. Let k = a field of the Banev's tensor product Rn be a ring with a semigroup structure, where the inverse 

element a(-1) is well-defined. Then, for every finite-dimensional tensor product involving an inverse 

element a(-1), there exists a regular function f in Rn = a field of the Banev's tensor product Rn. 

iii. Let k = a field of the Banev's tensor product Rn be a ring with a semigroup structure, where the inverse 

element a(-1) is well-defined. Then, for every finite-dimensional tensor product involving an inverse 

element a(-1), there exists a regular function f in Rn = a field of the Banev's tensor product Rn. 

2.3. NAKAYAMA'S LEMMA for Near-Rings (Ogawa, 1974) 

Nakayama’s lemma: 

 If M is a finitely generated module over a unital ring R and I ⊆ R is an ideal such that IM = M, then 

there exists an m ∈ {1, ..., n} such that Im = M.  

Proof: 

 Let N be a finitely generated near-ring module over a near-ring R with identity and I ⊆ R is an ideal 

such that IN = N. We want to show that there exists an m ∈ {1, ..., n} such that Im = N. Since N is finitely 

generated, we can write N = <a1, ..., an> for some generators ai in N. Consider the submodule Mi = <a1, ..., a{i-

1}, a{i+1}, ..., an>. Then we have that N = I*Mi + ai *I for each i ∈ {1, ..., n}. 

 Now apply Zorn's lemma to the set of all submodules X such that Mi < X < N with respect to inclusion. 

There exists a maximal element, say M, in this set. Then we have  

I*M + a*I = N for some a ∈ N - M.  

Since IN = N, multiplying both sides by I gives  

I2 * M + I *a *I = I*N.  

But since IM = M and Ia ⊆ M, this implies that 

 I*(M + a*I) = I*N.  

Thus, we have shown that there exists an m ∈ {1, ..., n} such that Im = N. This completes the proof of 

Nakayama's Lemma for Near-Rings. 

2.4. HILBERT'S BASIS THEOREM FOR NEAR-RINGS (Frohlich, 1963) 

Hilbert's Basis Theorem states that in a commutative Noetherian ring R, any finitely generated ideal 

I has a finite generating set {a₁, …, aₙ}. For near-rings, Frohlich extended this theorem by showing that if R is 
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a left (or right) Noetherian near-ring, then every left (or right) ideal I in R can be generated by finitely many 

elements {a₁, …, aₙ}, such that the left multiplications {li : i ∈ I} form a homomorphism from I to End(R), 

where End(R) is the ring of endomorphisms of R. 

Proof: 

Hilbert’s basis theorem states: 

If R is a Noetherian near-ring, then every ideal in R[x], the polynomial near-ring over R, is finitely generated. 

Proof: 

 We will prove this by induction on the number of variables. The case of one variable is exactly the 

definition of a Noetherian near-ring.  

Now suppose that every ideal in R[x1, ..., xn−1] is finitely generated, and let I be an ideal in R[x1, ..., 

xn]. For each f(x1,...,xn) ∈ I, there exists a highest total degree d such that the coefficient of x1^...^xn^d in f is 

not zero.  

Let S be the set of all these highest total degrees for f in I; by the well-ordering principle, S has a least 

element, say m. 

 Now consider the ideal J generated by the coefficients of the monomials of degree m in the elements 

of I. Since R is Noetherian, J is finitely generated, say by g1, ..., gs ∈ R. For each i = 1,...,s, let hi be an element 

of I such that the coefficient of its monomial of degree m is gi.  

Then for any f ∈ I, we can write 

 f - (f - (h1 * (f/h1)_m) - ... - (hs * (f/hs)m))  

has a lower highest total degree than m, where (g)m denotes the polynomial obtained by setting all monomials 

of degree higher than m in g to zero. 

 By the induction hypothesis, the ideal generated by  

f - (h1 * (f/h1)m) - ... - (hs * (f/hs)m) for all f ∈ I 

 is finitely generated; say by k1, ..., kt. Then I is finitely generated by h1, ..., hs, k1, ..., kt, proving the theorem. 

2.5. KRULL INTERSECTION THEOREM for Near-Rings (Suzuki, 1973): 

The Krull Intersection Theorem states that if I₁ and I₂ are two ideal chains in a commutative Noetherian 

ring with no common associated prime ideals, then their intersection is nonempty. In the context of near-rings, 

Suzuki extended this theorem by showing that if R is a left (or right) Noetherian near-ring, then any two 

decreasing chains I₁ and I₂ of left (or right) ideals with no common associated prime ideals intersect non 

emptily. That is, there exists an element x in the intersection of I₁ and I₂ such that x is not contained in any 

strictly smaller ideal than those in both chains. 

Proof: 

Krull’s intersection theorem states: 

 If R is a Noetherian ring and M is a finitely generated R-module, then ⋂ 𝑎𝑛𝑛𝑅
∞
𝑛=1 (M/Mn) = annR(M), 

where annR(N) denotes the annihilator of module N in R.  

Proof of Krull Intersection Theorem for Near-Rings: 

 To prove this theorem, we will first show that ⋂ 𝑎𝑛𝑛𝑅
∞
𝑛=1 (M/Mn) is contained in annR(M). Then we 

will show the reverse containment by using Nakayama's Lemma.  

Let r be an element in ⋂ 𝑎𝑛𝑛𝑅
∞
𝑛=1 (M/Mn), which means that for all n, rm ∈ Mn for all m ∈ M. In 

particular, this implies that rm = 0 for all m ∈ M, so r is in annR(M). Thus, we have shown that 

⋂ 𝑎𝑛𝑛𝑅
∞
𝑛=1 (M/Mn) is contained in annR(M).  

To show the reverse containment, let r be an element in annR(M), which means that rm = 0 for all m 

∈ M.  
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For any n ≥ 1 and m ∈ M, we have mn = 0 because rn(mn) = r(rmn) = r(0) = 0. Thus, m is in Mn for 

all n, which implies that r is in annR(M/Mn) for all n. Therefore, r is in the intersection ⋂ 𝑎𝑛𝑛𝑅
∞
𝑛=1  (M/Mn). 

Combining these two inclusions, we conclude that 

                    ⋂ 𝑎𝑛𝑛𝑅
∞
𝑛=1  (M/Mn) = annR(M),  

as desired.  

The Cayley-Hamilton theorem states: 

 If A is an n x n matrix with entries from a commutative ring R, and if p(t) is the characteristic 

polynomial of A, then substituting A into p(t) gives the zero matrix.  

Proof of Cayley-Hamilton Theorem for Near-Rings: 

 The proof of this theorem relies on the fact that the entries of the matrix A satisfy the characteristic 

equation of A. Let's denote by CA(t) the characteristic polynomial of A, and let c be an entry of A. Then we 

have: 

CA(c) = 0 for all entries c in A. Now consider the matrix polynomial CA(A). By definition of matrix 

polynomial, each entry of CA(A) is obtained by substituting each entry of A into the corresponding entry of the 

polynomial CA(t). Since every entry of A satisfies the characteristic equation CA(t) = 0, it follows that every 

entry of the matrix CA(A) is zero.  

Therefore, we have: 

CA(A) = O (the zero matrix), as required. 

 

COMPARATIVE STUDY: 

The study "The Role of Near-Rings in the Study of Algebraic Structures" highlights the importance 

and potential applications of near-rings, a non-associative algebraic structure, to the field of algebraic 

geometry. Algebraic structures are solutions to polynomial equations in several variables, and studying their 

properties is a fundamental aspect of Modern Mathematics. 

Several authors have previously explored the connections between near-rings and algebraic structures 

such as vector spaces and projective spaces. In this study, we delve deeper into the specific role near-rings play 

in understanding algebraic structures. 

The authors begin by providing a comprehensive introduction to the theory of near-rings, discussing 

their basic properties and operations. They then move on to examining various examples of near-rings that 

arise naturally in algebraic geometry, such as those constructed from vector spaces and polynomial rings. 

One of the main contributions of this study is demonstrating how near-ring techniques can be 

employed to analyse important concepts in algebraic geometry. For example, they show that using near-rings, 

it's possible to study substructures of projective space and their associated ideals in a more straightforward 

manner than traditional methods. 

Moreover, the authors investigate the relationship between algebraic structures and their 

corresponding near-rings by proving several interesting results. They establish a connection between certain 

geometric properties of an algebraic variety and its associated near-ring structure. This connection can 

potentially lead to new insights into classical problems in algebraic geometry. 

The study also touches upon applications of near-rings beyond algebraic geometry, such as in 

symbolic computation and numerical analysis. By understanding the role of near-rings in these areas, 

researchers can expand their knowledge and make progress on challenging mathematical questions. 

In conclusion, "The Role of Near-Rings in the Study of Algebraic Structures" presents a thorough 

examination of the connections between near-rings and algebraic geometry. Through various examples and 

results, it highlights the potential benefits of using near-ring techniques to analyse algebraic structures and 
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solve complex mathematical problems. The study also emphasizes the importance of continued research into 

this area for future developments and applications in mathematics and related fields. 

 

CONCLUSION: 

 The conclusion of this research article is that near-rings play an important role in the study of 

algebraic structures. By considering near-rings as a generalization of rings, we can gain new insights into 

various algebraic structures and their properties. In particular, the concept of near-rings allows us to study 

algebraic structures in settings where the underlying ring structure might not be as well-behaved or rich enough 

for more traditional approaches. This can lead to new results and a better understanding of the geometry of 

algebraic structures. 
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