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 ABSTRACT 

This research paper proposes an approach to model the mechanical properties of bituminous pavements towards 

environmental factors. In order to allow an adaptation to the available data, we have chosen a hybridized 

connectionist model with a time series approach while taking in account the sensitivity of the bituminous layer to 

temperature and traffic. The temperature will be represented as a time series in the SARIMA model (1,2,1), with a 

seasonal factor  s = 12. In order to compensate the restricted data volume, the complex modulus will be reproduced 

from a three-layered RNA by a backpropagation error learning algorithm. Modifications and relations will be 

introduced on the data and the input parameters so as to fast-forward time calculation and the accuracy of the 

model.   
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1. INTRODUCTION 

As far as the pavement behavior analysis is concerned, the multilayer model characterized by the homogeneous and 

elastic bearing of each layer under static loading is by far the most well-known model. For the case of a bituminous 

pavement, the viscoelastic property of the surface layer is represented by the complex modulus [1] [2]. The main 

problem in modeling bearing during operation remains the means to collects the data records. Since some 

experiments or collections require higher amount of financial resources than others, it must be pointed out that some 

data will be less available especially for developing countries. 

In this article, our complex modulus will present a dynamic model compatible Data with different while considering 

the most influential factors. For the complex module, considering the most influential factors, we will present a 

dynamic model compatible with data of different dimensions. 
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2. PAVEMENTS BEARING 
2.1. Structures and materials 

 

 
 
 

- Subgrade layer: made of selected materials, it improves the lift of the support soil and facilitates the 

compaction of the upper layers. 

- Subbase layer: in selected materials or in untreated gravels, its main role is to reduce the loads that are 

transmitted to the support soil. 

- Base layer: “as dug” gravel, at this state the efforts due to the traffic are still very important as well as the 

environmental factors. 

- Coating layer: mixture of aggregates and hydrocarbon binders, this layer is exposed to the surface and 

directly receives the tire loads. 

The calculation of forces and deformations is generally considers an isotropic linear elastic multilayer model which 

requires the determination of Young's modulus values and the Poisson's ratio of each pavement layer. Due to the 

singular properties of bitumen, bituminous mixes are highly dependent on the loading speed as well as the 

temperature [3]. With respect to the elastic behavior, the complex modulus will be the module used for the coating 

layer. And as far as the lower layers are concerned, we can use equivalent modules directly proportional to their 

CBR [4]. 

 

2.2. Effect of the temperature and the traffic 

Temperature presents two main mechanical effects: 

• The change in the stiffness of the material: A bituminous mix that is heated becomes "soft" 

•  The creation of constraints and deformations within the material due to dilatation -contractions during 

temperature changes [5]. 

As a result to the kinetic susceptibility of the bituminous mixture, which is inherited from the properties of the 

binder, the speed of the traffic strongly influences its behavior. Although the relation between velocity and 

frequency is according to the structure depth and the rigidity of the latter, we can use the following relation as a first 

approximation: 

 
 

 

2.3. The modulus of elasticity 

The linear modulus of elasticity of a material is given by HOOKE Law: 

 

 
σ,E,ε : are respectively the state of constraints, the modulus of elasticity and the relative deformation 

 

For a visco-elastic material, the bearing is governed by the complex modulus E *: 

 

 
 

Surface layer  

Base layer 

Subbase layer   

Subgrade layer 

Fig -1: A pavement structure 
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Often called rigidity module, | E* | is the standard for complex module. φ is the phase shift angle of the material. It 

intervenes in the quantification of the energy dissipated in the material at each loading cycle. And ω is the pulsation 

corresponding to the loading. 

The  complex representation of constraints and deformations are: 

 

 
 

Thus, the modulus of elasticity can be determined experimentally by measuring the corresponding deformations at a 

given constraints state. Olard and Di Benedetto have presented a model, based on that of Kelvin Voigt, which allows  

a better characterization of the visco-elastic properties of bituminous materials. [6] 

 

3. EQUATION OF PARAMETERS 

3.1. Temperature in time series 

Temperature has a direct influence on materials. As measurements of degradations and deformations in a real 

operating environment can not be measured continuously at regular intervals, temperature variations will be 

introduced into the models as a random variable following a time series model {y1, y2, y3, ..., yT}, with well-

defined modeling parameters [7] [9] 

 
Where y (t) is the variable to predict at time t, f is a linear or non-linear function; w is the parameter vector of the 

model. We will consider that the parameters are invariant or have relatively small variations over time. x (t) = (y (t-

ih), x1 (t-jh), x2 (t-kh), ...) is the vector of inputs or explanatory variables; t = 1, ..., T; T is the number of 

observations available; h is the sampling interval; i, j, k are the delay indices, i belongs {1, ..., I}, j belongs {1, ..., J}, 

k belongs {1, ..., K); and I, J, K are the maximum delays for the different inputs. They are determined by correlation 

study or association rules. e (t) is a random term that can be considered as the prediction error called residue, 

behaving like a white noise..  

After defining the variables and the function f, the identification of the model consists in looking for the criterion 

function w. This identification takes into account the differences between the observed output and the output of the 

model. 

 

3.2. Complex module by a connectionist approach 

The tests on the complex modulus allowed us to get complex modulus values for different frequency and 

temperature values [8]. The modeling approach of the complex module will be a connectionist approach with a 

multilayered network. The latter makes it possible to adapt to the dataset while offering a multivariate modeling. 

 

 

 
 

 

Fig -2: Structure of a multilayer network 
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The learning phase consists of modifying the synaptic coefficients of the network until the desired behavior is 

obtained. The learning will follow an algorithm of backpropagation errors. 

 

 Forward propagation : 

 

 

 

 

 
Given o be the output of the neuron, c the desired output,    the representation of the output error: 

 
 Backward propagation : 

The relation obtained by minimizing the gradient through the outputs of the transfer functions in each neuron is: 

 

 
The correction of the synaptic coefficients between two neurons is obtained by the relation 

 
To optimize the network and reduce the computation time, we introduce a momentum term α ∈] 0; 1 [which keeps 

in memory the corrections: 

 
 

 

 

Fig -4: Backwards error propagation 

Fig -3: Forward exit propagation 

k Wjk j Wij I (output) 
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4. EVOLUTION OF THE COMPLEX MODULUS IN REAL ENVIRONMENT  

4.1. Temperature forecast 

During the passage of a rolling load, the speed (V) and the temperature are assumed to be constant. Since it is 

impossible for a developing country to establish a database with temperatures available at any time, we have decided 

to consider only a sample of data on the average monthly temperature: 

 

 

 
Intuitively, we are able to say that the average daily temperature is a seasonal process. And according to Fig-5, the 

series is not stationary. The ideal form to represent this series is an ARIMA model (p, d, q) containing a seasonal 

factor s = 12. Stationarization of the process is carried out with the Dickey and Fuller tests [9] with an acceptance 

threshold of 5%. And in order to have the minimal optimal model representative of the series, we will apply Coin 

method [9], with the matrix of autocorrelation. For estimator calculation, the maximum likelihood will be used. 

 

After calculation, we find the estimators of model ARIMA (1,2,1): φ_1 = 0,02; θ_1 = -0,98. And following the 

integration steps, we find the results of Fig-6 

 

 
For the calculation, it was necessary to assume that the law of errors configured as such: we have proposed a normal 

distribution law ,, with zero initial states.  

At first sight, we can see the seasonality of the model with a representative variation. Furthermore, the analysis of 

the residues tends to validate the model which mathematical expectations fluctuates around zero from a certain 

horizon and their distribution approach  a normal law. 

 

Fig -6: Reproduction of the observed data model 

Fig -5: Average daily temperature [°C] of the city of Antananarivo for a month 
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However, this figure permits us to detect the inaccuracy of the model. These inaccuracies as well as the imperfect 

behavior of the residues are due to the lack of data, to the initial conditions on the residues  and 

 

For a forecast on the horizon h of an ARIMA process, we use the estimators of the model such as: 

 

 
 

 

 
4.2. Application of the complex modulus 

The data used here come from laboratory tests: 

 

Fig -8: Prediction of the average daily temperature over a horizon of T = 100 months 

Fig -7: distribution of residues 
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Table 1 : Values complex modules depending on the temperature and frequency [8] 

  frequency[Hz] 

temperature[°C] 8 15 25 33 50 

-10 21837 22538 23145 23473 24603 

-5 19582 20630 21327 21663 23266 

0 17488 18316 19244 19790 21441 

5 14728 15809 16750 17312 19459 

15 12035 13212 14172 14734 16375 

20 8800 10042 10809 11584 12607 

25 6629 7693 8604 9077 10247 

30 4438 4516 6184 6634 7506 

 

Network characteristics: 

 3 inputs: 

- X1 = E_ref [MPa] = 8604: the reference modulus for a temperature of 25 ° C at a travel 
frequency of 25Hz 

- X2 = t [° C]: the ambient temperature 
- X3 = f [Hz]: the frequency 

 2 hidden layers with 6 neurons: The number of hidden layers and the number of neurons per layer have an 

influence on the quality of learning. 

 An output: Y = E * [MPa], the complex modulus of materials 

 

 
 

 
The relations between the input parameters of the complex modulus are non-linear relationships. To optimize the 

calculation time, we will convert the temperature in ° K (0 ° K = -273.15 ° C) to have a positive value in all cases. 

And to lift the non-linear forms, we will use the property of the logarithmic function. 

 

 

Fig -9: Complex modulus network model 
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With a 5% threshold, we find the transfer matrix [F]: 

 

For a time series forecast of the complex modulus which is both compatible with the traffic data, we will consider  

the average daily temperatures. 

 

In the city, we will take an average speed of 15.2km / h versus an average speed of 60km / h on the road which is 

typical public transport. 

 

 

 
After making the simulation, we found that the model presents a slight default to determine the complex modulus for 

a low temperature. But for tropical regions, this problem can be set aside. 

 

5. CONCLUSION  

The results of these investigations show us the significant evolution of the complex modulus depending on the 

temperature and the frequency of the cycle. The higher the temperature, the more the module decreases. There is 

also a reflective decrease with the speed of circulation. Residue analysis, relative errors and evaluation criteria led to 

a validation of the model. However, even after validation, it is clear that a larger volume of data will improve these 

outcomes. 

These results might allow us to calculate the deformations and the states of constraints per cycle of passage for the 

case of pavement structures in a future work. As well as this rheological behavior per loading cycle might serve as a 

basis for an estimation of the states of degradation of pavements during its exploitation.

Fig -10: Forecast of the average daily values of the complex modulus from May 2019  on a 100-month horizon of 

the city of Antananarivo 
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