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ABSTRACT 

 

The simulation of an infinite space in FDTD formulation can be done by the formulation of an ABC (Absorbing 

Boundary Condition). In this paper, the implementation of a loss-layer for the grid termination is presented. The 

simulations are made for a propagation in TM mode in a two-dimensional grid. The field update equations are 

therefore seen first with the results of a simulation without ABC. After that the behavior of a dielectric loss medium 

is studied. It is the absorbent property of a loss dielectric medium that will be exploited for the implementation of the 

FDTD grid termination. To ensure that these grid terminations do not reflect incident waves, the progressive loss 

factor implementation study complements the FDTD grid termination implementation. 
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1. INTRODUCTION  

In an FDTD formulation, the spatial grids simulation have a finite dimension. If no ABC (Absorbing Boundary 

Condition) is specified, electromagnetic waves incident at the edges of the grid are reflected back to the simulation 

space. These reflected waves can interfere with the simulation as after a certain simulation time it will no longer be 

possible to distinguish the wave to be studied from these reflected waves. Then, ABC’s are needed to prevent 

electric and magnetic fields from being reflected in the problem space (FDTD grid) [1]. 

In order to make an FDTD grid behave like an infinite space, thus preventing waves from being reflected at its 

limits, grid termination with loss layers will be presented in this paper.  

2. WAVES PROPAGATION IN A DIELECTRIC WITH LOSS 

2.1. Field update equations for 2D FDTD TM formulation 

For the 2D case, the variations in the z direction are here assumed to be zero. In this case, there appear two groups of 

equations governing EM wave propagation. These equations define two modes of propagation, the TM mode 

(Transverse Magnetic) and the TE mode (Transverse Electric). The field update equations for the TM mode, 

considered in this work, are given in Eq.1. [2][3] 
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2.2. Waves propagation in vacuum  

Fig. 1 gives snapshots of the propagation of a sine wave of frequency 500 MHz, introduced at the node (20,30) of a 

grid of dimension 80 × 60. The spatial step is defined by ∆x = ∆y = 0.06 m, and the temporal step by ∆t = 14.14 ns. 

In the figure, the wave propagation up to time step 60 is quite visible. From a certain time it is difficult to distinguish 

the wave from the source of the waves reflected at the limits of the grid (n = 85).  

 

Fig.1: Snapshots of the propagation of a sine wave traveling through a vacuum in TM mode. 
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2.3. Wave propagation in a loss dielectric 

Fig. 2 illustrates the propagation of a wave in vacuum then striking a medium formed by a rectangle of dielectric 

starting at the node (35,1) and ending at the node (60,60). The permittivity of the dielectric is defined by 

𝜀𝑧([35,60], [1,60]) = 4, and the permeability by 𝜎𝑧([35,60], [1,60]) = 1.41 × 10−12.  

Part of the wave is reflected at the Vacuum / Dielectric interface, and the wave passing through the dielectric is 

attenuated. The reduction in speed within the dielectric is also noted. The reflection and attenuation of the wave are 

due to the non-zero conductivity of the medium. As  𝜀𝑟 = 4, the wave speed in the middle is divided by 2. 

 

Fig.2: Snapshots of the propagation of a sine wave traveling through a dielectric in TM mode. 

 

3. MATCHING LAYERS WITHOUT LOSSES WITH LAYERS WITH LOSSES 

3.1. Principles of the method 

In the event of a loss, the characteristic impedance of a loss medium is given at Eq.2. 
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When 𝜎𝑚/𝜇0  = 𝜎/𝜀0, the terms in parentheses are equal and therefore cancel each other out. With these terms 

canceled, the characteristic impedance is indistinguishable from the case without loss (Eq.3). This is Berenger’s 

principle of PML (Perfectly Matched Layer).[4] 
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As shown in Eq.4, the reflection coefficient of a wave normally incident on a flat boundary is proportional to the 

difference in impedance of one side and the other of the interface. If the material in one side is lossless while that in 

the other side is loss with 𝜎𝑚/𝜇0  = 𝜎/𝜀0, then the impedances are matched. With the matched impedances, there 

will be no reflection from the interface. Therefore, a lossy layer can be used to complete the grid. The fields will 

dissipate in the lossy region, and if the region is large enough, they could become small by the time they meet the 

end of the grid. Upon reflection at the end of the grid, the fields should propagate through the loss layer where they 

would decay even further.  

Γ =
𝜂2−𝜂1

𝜂2+𝜂1
= 0         (4) 
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The definition of loss layers ending the grid is done by redefining the multiplication coefficients of the fields at Eq.5 

for the electric field and Eq.6 for the magnetic field. 
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For the implementation of the loss layers, instead of varying the values of the conductivities 𝜎, loss factors are 

defined. These loss factors are defined in Eq. 7, and for the pairing of loss layers they must have the same values. 

𝑝𝑒𝑧 = 𝑝𝑒2𝑑(𝑖, 𝑗) =
𝜎𝑧∆𝑡

2𝜀𝑧
        (7.a) 

𝑝𝑚𝑥 = 𝑝𝑚2𝑑 (𝑖, 𝑗 +
1

2
) =

𝜎𝑚𝑥∆𝑡

2𝜇𝑥
       (7.b) 

𝑝𝑚𝑦 = 𝑝𝑚2𝑑 (𝑖 +
1

2
, 𝑗) =

𝜎𝑚𝑦∆𝑡

2𝜇𝑦
       (7.c) 

3.2. Implementation and results 

Fig. 3 shows the implementation snapshots of 15 cell thickness loss layers to terminate the grid. The values of the 

loss factors are defined by 𝑝𝑒 = 𝑝𝑚 = 0.05.  

 

Fig.3: 2D FDTD grid terminated with loss factor 0.05 and 15 cells thickness of loss layer 
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The lossless and loss media impedances are matched, the fields enter the loss region without reflection. In fact, this 

is true in the continuous world, but approximately true in the discretized FDTD world where reflection is present. As 

the fields spread in the loss region, they dissipate to the point where they are almost negligible when they re-enter 

the lossless region. 

4. REDUCED THINKING AT LOSS INTERFACES 

4.1. Principles of reflection reduction 

In order to implement FDTD grid terminations with absorbent layers, it appears that it is necessary to take into 

account the fact that if 𝑝𝑒 is high (the conductivity 𝜎 is high) then the layer is a current conductor and therefore 

reflects the electric field. The reflection of the field, in this case, would be as important as the value of 𝑝𝑒 was large. 

However, greater is the 𝑝𝑒 value, then greater is the dissipation of the wave under the loss layer. 

An optimal absorbent layer would therefore be a layer where absorption occurs gradually, that is to say with the 

value of 𝑝𝑒 increasing as the layer is crossed. This gradual increase can greatly reduce reflections at the interfaces of 

the absorbent layer. D.M. Sullivan introduced the auxiliary parameter 𝑥𝑛 (Eq.8) for the PML calculation, a 

parameter similar to 𝑝𝑒𝑧. [5] The calculation of the loss factors 𝑝𝑒 will be done in the same way and described in 

Eq.9. The values of 𝑝𝑒, in a layer of fifteen cells at the right edge of the grid are seen in Tab. 1.  

𝑥𝑛(𝑖) =
𝜎(𝑖)∆𝑡

2𝜀0
            (8) 

𝑝𝑒(𝑖) = 0.333 (
𝑖

𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒
)

3

;        (9) 

 

Tab.1: Values of 𝑝𝑒 at the right edge of the grid for a loss layer consisting of 15 cells 

𝒑𝒆(𝟕𝟔) 𝒑𝒆(𝟕𝟕) 𝒑𝒆(𝟕𝟖) 𝒑𝒆(𝟕𝟗) 𝒑𝒆(𝟕𝟎) 

9.86 × 10−5 7.89 × 10−4 0.0027 0.0063 0.0123 

𝒑𝒆(𝟕𝟏) 𝒑𝒆(𝟕𝟐) 𝒑𝒆(𝟕𝟑) 𝒑𝒆(𝟕𝟒) 𝒑𝒆(𝟕𝟓) 

0.0213 0.338 0.0505 0.0719 0.0987 

𝒑𝒆(𝟕𝟔) 𝒑𝒆(𝟕𝟕) 𝒑𝒆(𝟕𝟖) 𝒑𝒆(𝟕𝟗) 𝒑𝒆(𝟖𝟎) 

0.1313 0.1705 0.2168 0.2707 0.3330 

 

4.2. Implementation and results 

For a 2D simulation in TM mode, the absorbent layers of thickness  𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒  are introduced at the limits of the 

grid of dimension 𝑡𝑎𝑖𝑙𝑙𝑒𝑥 × 𝑡𝑎𝑖𝑙𝑙𝑒𝑦using Eq.10. The implementation is illustrated in Fig. 4, where the increasing 

values of the loss factors are seen at the limits of the grid (of dimension 60 ×  80). The source is always a sine wave 

of frequency 500 MHz, introduced at the node (20,30) of a grid.   
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𝑖 ∈ [1, 𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒]        (10.a) 

𝑝𝑒2𝑑([𝑖: 𝑡𝑎𝑖𝑙𝑙𝑒𝑥 − 𝑖 + 1], 𝑖) = 𝑝𝑒(𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒 − 𝑖 + 1)    (10.b) 

𝑝𝑒2𝑑([𝑖: 𝑡𝑎𝑖𝑙𝑙𝑒𝑥 − 𝑖 + 1], 𝑡𝑎𝑖𝑙𝑙𝑒𝑦 − 𝑖 + 1) = 𝑝𝑒(𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒 − 𝑖 + 1)   (10.c) 

𝑝𝑒2𝑑(𝑖, [𝑖: 𝑡𝑎𝑖𝑙𝑙𝑒𝑦 − 𝑖 + 1]) = 𝑝𝑒(𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒 − 𝑖 + 1)    (10.d) 

𝑝𝑒2𝑑(𝑡𝑎𝑖𝑙𝑙𝑒𝑥 − 𝑖 + 1, [𝑖: 𝑡𝑎𝑖𝑙𝑙𝑒𝑦 − 𝑖 + 1]) = 𝑝𝑒(𝑡𝑎𝑖𝑙𝑙𝑒𝑝𝑒𝑟𝑡𝑒 − 𝑖 + 1)  (10.e) 

 

 

Fig.4: Illustration of the terminating grid layer implementation with progressive loss factors 

Fig. 4 shows the gradual increase of the value of the loss factors in the layers. The figure on the left shows the layers 

with progressive losses and the one on the right shows the loss layers with a fixed loss factor. The structure of the 

figure on the left should reduce reflections at the interfaces of the loss layers. 

Fig. 5 gives the snapshots of the 𝐸𝑧 field on the (𝑥𝑦) plane. In progressive factor loss layers, the wave is gradually 

attenuated as it penetrates the depths of the layers. With the implementation of progressive loss factors in the FDTD 

grid, no reflections produced by the interfaces of the loss layers are apparent. 
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Fig.5: 2D FDTD grid finished with progressive factor loss layer with 15 cells thickness 

5. CONCLUSION 

ABC's application allows an FDTD grid, which is a space of finite dimension, to behave like a space of infinite 

dimension. The ABC formed by loss layers is suitable for simulations of infinite media. The constraint of the loss-

layer grid termination implementation is to be able to reduce, or even eliminate, reflections at its interfaces. In order 

to manage with these constraints, the implementation of the loss layers is done with the implementation of 

progressive loss factors. The results obtained show the effectiveness of the method. Therefore, grid termination by 

progressive factor loss layers is a method that can be used in FDTD simulations as an ABC. 
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