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ABSTRACT 
 

 In The age of information technology the idea of turning data centers executing scientific batch jobs into private 

clouds is as attractive as troubling. Cloud platforms may help both in limiting power consumption and in  

implementing fault tolerance strategies. However, there is also the fear that performance may worsen, and that the 

electricity required for longer job duration and fault tolerance implementation may overcome the saved one. In this 

paper, we present the consumability analysis for assessing the impact of cloud and fault tolerance tunings on 

scientific processing systems. The analysis considers performance, consumption, and dependability aspects, jointly. 

The aim is to pinpoint if, for a given system, there is a setting where consumption and job failure rate decrease, 

while performance is not affected. Applied to the scientific data center at our University, the analysis allowed us to 

find the proper selection of virtual machines’ configuration, consolidation strategy, and fault tolerance tuning. 
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1. INTRODUCTION  

Many institutions own scientific data centers to perform heavy computations, typically as long-running, 

non interactive (batch) jobs. While such computing systems are conceived for high performance, they are rarely 

used at their maximum capacity [1], [2], wasting energy due to the power consumption of machines uselessly active. 

Moreover, they are affected by a non negligible number of failures, which cause further energy waste (of unended 

jobs), and impact system dependability1 [4]. Cloud computing platforms are emerging as a promising means to 

address the above issues, suggesting cloudification of scientific data centers. Jobs can be executed in virtual 

machines (VMs) according to an Infrastructure- or Platform- as-a-Service model [5]. Cloudification may allow 

energy saving by consolidating VMs in a reduced number of physical machines (PMs), and  by putting in standby or 

switching off idle ones [6], [7]. Virtualization is appealing also as it eases the implementation of fault tolerance 

mechanisms; for instance, the checkpointing of jobs is simplified by snapshotting whole VMs, whereas job 

replication is turned into VM replication [8], [9]. Unfortunately, virtualization and cloudification may also worsen 

performance and consumption, frustrating or even outweighing the expected benefits [6], [10]. In [11], we presented 

preliminary results indicating that performance, consumption, and dependability aspects of a scientific data center 

mutually affect each other, when using virtualization and fault tolerance. In this paper, we propose a consumability 

analysis technique for quantitative assessment of such mutual relations when cloudifying a scientific data center. 

The analysis serves for estimating the impact of cloud solutions, and for proper management and tuning. The 

technique is based on stochastic models, conceived to be fed with field data from the s ystem under analysis. We 

apply the analysis to the S.Co.P.E. system at our University, demonstrating that a cloudified scientific data center 
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can be tuned so as to reduce power consumption and job failure probability without affecting performance. After 

discussing related research (Section 2), the paper proceeds as follows: 

1) The consumability models of a physical batch system (PS) (Section 3) and of the corresponding cloudified system 

(CS) (Section 4) are proposed, encompassing performance, consumption and availability. 

2) Real data gathered by monitoring a scientific data center are used to estimate input parameters of PS (Section 5) 

and CS models (Section 6). This case study serves both for validating the models and as guideline to practitioners;  

3) Models are solved (Section 7), demonstrating that it is possible to find a proper trade off among performance, 

consumption and dependability by: (i) instantiating a number of VMs per PM which reduces the VMs management 

overhead while providing flexibility and execution isolation, (ii) consolidating VMs with different load types, thus 

parallelizing operations with different resource requirements, and (iii) selecting and tuning the fault tolerance 

strategy so as its cost is balanced by the saving of energy due to  job failures. 

2. RELATED WORK 

The common deployment models for cloud computing are public cloud and private cloud [5]. In the former 

case, a service provider supplies a cloud infrastructure for open use by customers. In the latter, the infrastructure is 

meant for exclusive use by an organization. Many studies discuss how scientific computing can be migrated to a 

public cloud to avoid the building and ownership costs of large data centers [6], [10], [12], [13], [14]. The focus of 

this paper is on private cloud: institutions that already own a data center may adopt cloud and virtualization as 

management means. For the S.Co.P.E. scientific data center, discussed in this paper, a grid -on-cloud prototype is 

presented and validated in [15]. Other platforms for virtualizing scientific processing systems by integrating virtual 

cluster provisioning have also been proposed [16]. While the objectives of these works partially overlap with the 

ones in this paper, they are still in their infancy and experimental results do n ot prove the reaching of the goals. 

More studies try to find the configuration that improves performance, consumption or dependability. They often 

focus on either (i) the placement of virtual machines on physical machines (VM consolidation), or (ii) the placement 

of tasks on VMs (similar to the common scheduling problem). 

Performance issues are usually faced by searching for consolidation strategies mixing VMs with different 

load in a same server. Experimental results show that for compute intensive tasks, performance gradually degrades 

when the number of co-hosted VMs grows, while in the case of I/O operations, performance degradation occurs due 

to additional delay for data processing [17]. Similarly, CPU-bound and memory-bound VMs can be consolidated for 

efficiently exploiting resources [7]. Apart from reducing the performance decay introduced by the virtualization 

layer, how the power consumption may benefit from the proper scheduling of VMs is studied in the Magellan 

Project [18]. It investigates the role of cloud computing in addressing energy related issues of mid-range data-

intensive computing. Main findings revealed that cloud can be used even for scientific computations, but their 

specific requirements are to be taken into account, above all in the case of I/O bound operations (e.g., 

communication operations, disk read/write operations). With respect to these studies, we consider not only the 

impact of consolidation on performance and consumption, but also on dependability. Dependability issues are oft en 

considered as ―SLA violations‖ [6], [7], [10], [19]. Using this count as dependability metric is not always correct, 

since a violation may simply represent the performance going below a certain threshold, while the actual faulty 

behavior is neglected. The search for energy-aware trade-offs between reliability and performance is discussed in 

[19], which compares several consolidations. Advantages of implementing checkpointing and replication fault 

tolerance strategies in virtualized environments are discussed in [8], [9], [22], [23]. Hypervisor-based fault tolerance 

(HBFT) implements the checkpoint-recovery protocol, but it causes a large overhead to VMs, then several 

optimizations should be considered for its adoption [9]. The use of VMs’ snapshots for implementing checkpointing 

appears as a feasible solution, instead [8], [22]. The overhead of the mechanism, which should suspend, snapshot, 

and resume VMs, can be reduced by using incremental snapshotting [8]. Replication -based fault tolerance is 

described in [23]. A program is executed in a VM for which an active spare is created; that is, another VM acts as a 

replica and it is updated up to forty times a second, thus its state is just slightly delayed with respect to the main VM. 
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The importance of considering the mutual relations among performance, energy efficiency, and dependability 

attributes in virtualized environments was discussed in our previous paper [11]. Results paved the way towards the 

consumability analysis for the joint assessment of the three aspects, which in this paper is discussed in detail and 

applied to a real system for tuning several factors, demonstrating the value added of cloud as a means for scientific 

data center management. 

3. SYSTEM  MODELING 

We adopt a model-based approach, since it offers an abstraction of the real system leaving out unnecessary 

details and permits to avoid system implementation. The modeling is from the job execution perspective. In a system 

running batch jobs, both performance degradation and failures directly reflect on the jobs submitted by the users, 

and a job, in turn, affects the consumption of the system. The problem is to identify the relations among 

performance levels, energy consumption dynamics, and failures. We use a hierarchical approach; that is, 

performance, consumption, and failures are first modeled separately and then composed in an overall model taking 

into account their mutual relationships. 

3.1 Performance Model 

The performance model describes the correct execution flow of a batch job according to popular 

resource managers/job schedulers for batch systems, such as Globus Toolkit,3 Torque, 4 Univa Grid 

Engine.5 A job submitted to the system is queued; then it becomes running when resources for its 

execution are identified and its execution time arrives; when the execution terminates, the job is 

completed and results are returned to the user during the exiting stage. The SRN in Fig. 1 models such a 

job life cycle. Transition are represents the job arrival; then, a job is queued and a token is added to place 

Q. Scheduling and starting of a job execution are modeled by transition sch. Upon its firing, a token is 

moved from Q to R. Transition cpl depicts the completion of the job by removing a token from R and 

adding a token to C. Upon firing of transition exg, a token is removed from C, mimicking the notification 

of the final result to the user. gs is a guard (or enabling) function used for inhibiting the scheduling 

capacity when no enough free resources are available for executing a job. This depends on the number of 

already running jobs and on the total available resources. Probability distributions of inter-arrival, 

scheduling, completion units. 

4. CLOUDIFIED SYSTEM MODELING 

In the case of a cloud-based batch system, we consider (i) jobs executed in VMs, (ii) each PM 

hosting up to a certain number of VMs, (iii) switched on only PMs running at least one VM, and in 

standby the others (i.e., with a reduced power consumption, but requiring a certain time before VMs can 

be hosted). The performance and failure models have to consider additional events specific to a CS (e.g., 

VM creation, failure of a VM creation). The consumption model does not change with respect to the 

physical system (it differs for the weights, which are inputs of the model. The system basically a cloud 

based batch system, hence performance is the major challenging factor in that model.   

4.1 Performance Model 

Before executing a job in a VM, that machine is to be instantiated on a PM. This operation is 

called provisioning of a VM. After the execution, the machine is to be deleted and resources of the PM 

freed. This is called deprovisioning of a VM [35]. Hence, with respect to the performance model 

discussed in Section 3.1, we add two transitions modeling the provisioning phase and the deprovisioning 

phase.  
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5. CONCLUSIONS  

Cloudification of scientific data centers is attractive for improving their management and  efficiency. 

Nevertheless, all that glitters is not gold. Cloud is based on virtualization, which significantly impacts performance. 

Also, the hypervisor causes a consumption increase in the hosting nodes. Finally, failures happen, and fault 

tolerance has a cost. Cost benefit analysis of management strategies for a scientific processing system can neither 

overlook any of performance, consumption and dependability aspects, nor their mutual effects. This paper presented 

the consumability analysis to estimate the impact of cloudification on such attributes, and the case study of a real 

scientific data center, which demonstrated the effectiveness of this analysis as a means for administrators to properly 

tune their systems. Results showed that Cloudification can definitely 
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