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ABSTRACT 
We present a new model of resource utilization which we call the ultrametric model. It is based on a modeling of 

hierarchical resource utilization by p-adic numbers. This model can be used on a system with several resources 

which can be classified in order of importance. The state of such a system is a p -adic number. We define an 

elementary resource utilization as this state of the system, and a representation of the uses in the form of balls in the 

set of p-adic numbers has been advanced. From these models, and using state transitions at each change in resource 

utilization whether it is the arrival of a new customer, or a departure, we can demonstrate that the probability of 

resource utilization is governed by a Cauchy problem: a fractional differential equation, and more particularly, 

with the Vladimirov operator. 
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1. INTRODUCTION 

Theories on p-adic dynamical systems have been intensely advanced [1]. Flow dynamics, like algebraic geometry, 

have been proposed by Herman and Yoccoz [2] in the small divisor problem in non-Archimedean fields. It seems to 

be the first publication talking about dynamics in a non-Archimedean domain. Future developments were observed 

according to Silverman [3]. Several fields of applications of p-adic numbers in various fields have been explored by 

Khrennikov et al.: differential analysis [4], quantum mechanics [5], biology [6]–[8], cognitive sciences [9][10 ], 

imagery [11], system dynamics [12], psychology and finance [13], sociology and medicine [14] and many other 

fields [15], ... 

For our case, we will propose an analysis of a dynamical system in a non-Archimedean domain. A system of 

hierarchical resources whose state changes over time according to the utilization of these resources. We have shown 

that the occupations of these resources are governed by the ultrametric diffusion equation whose resolution uses a 

Cauchy problem with Vladimirov's fractional derivative operator. 

 

2. ULTRAMETRIC MODEL OF HIERARCHICAL MODEL 

2.1 p-adic valuation 

Let p be a prime number. For any rational number k m
r p

n
 Q , where m and n are coprime with p, we denote 

( )pv r k  or else for 0r  , and by convention (0)pv   . We define the p-adic absolute value in Q  as the map 

from Q  to [0, [  R , denoted  . 
p

 by : 

( )pv r

p
r p


  (1) 
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The map 
pv from Q  to Z  is called p-adic valuation. 

Note some properties of this p-adic absolute value in Proposition 1. 

Proposition 1. 

- For any rational number 
1r  and 

2r  : 
1 2 1 2. .

p p p
r r r r  

- For any rational number 
1r  and 

2r  :  1 2 1 2max ,
p p p

r r r r    

Proof : 

The rational numbers
1r and 

2r  can be written respectively like 1 1

1

1

k m
r p

n
  and 2 2

2

2

k m
r p

n
  where 

1 2 1 2,  ,   and m m n n  are coprime with p. So we have 1

1

k

p
r p


  and 2

2

k

p
r p


 . As for the product 

1 2.r r  we have 

1 2 1 2

1 2

1 2

.
k k m m

r r p
n n


  . Knowing that 

1 2 1 2 and m m n n  are coprime with p, we can say that the p-adic absolute value of 

the product 
1 2.r r  is equal to 1 2

1 2 1 2. .
k k

p p p
r r p r r

 
  . 

For the sum, we have: 

 

2 1

1

1 2

1 2

1 2

2

1 2

1 2 2 1

1 2

1 21 2 1 2 2 1

1 2

1 2 1 2 1 2 2 1

1 2

1 2

min ,

.   si 

.   si 

.

k k

k

k k

k k

k k

k

k k

m n p m n
p k k

n nm m p m n p m n
r r p p

n n n n p m n m n
p k k

n n

u
p

v





 


 
     

 





 

where we can prove that v and p are also coprime. 

For the case of u, if it is prime with p, we have 
 1 2min ,

1 2

k k

p
r r p


  , therefore : 

     1 2 1 2
min ,

1 2 1 2max , max ,
k k k k

p p p
r r p p p r r

  
    . 

If it is not prime with p, we can find a nonzero natural integer k  such that 'ku p u  and 'u  are prime with p. The p-

adic absolute value of the sum is therefore : 
        1 2 1 2 1 2

min ,

1 2 1 2max , max , max ,
k k k k k k k k k

p p p
r r p p p p p r r

       
     . 

So,  1 2 1 2max ,
p p p

r r r r  . 

 

Like (0)pv   , 0
p

r  if and only if r = 0. And these three properties show that  . 
p

 defines a norm on the set of 

rational numbers Q . The second property is called the strong triangle inequality. 

A norm verifying the strong inequality is called a non-Archimedean norm or an ultrametric norm. A norm satisfying 

the usual triangle inequality is called the Archimedean norm. 

2.2 Hierarchical resource system 

We will consider a system composed of 1m  of  
iT  ( 0,...,i m ) types of resources. In the following, we can say 

resource of type 
iT  or simply resource 

iT . Each resource 
iT  is assumed to be discrete with a maximum quantity 

equal to 1p , i.e. the number of resources 
iT  used only takes values integers between 0 and 1p  . If we denote by 

ir  the quantity of resources iT  used, we have  0,1,..., 1ir p   for all  0,..., .i m  In a real system, it may be that 
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the maximum quantity 1p  of resources does not necessarily give a prime number p. We can use the first prime 

number that follows this maximum quantity. 

This system is assimilated to a system of hierarchical resources. Resource 
0T  is the most important, resource 

iT  is 

more important than resource 
1iT 
, and so on. This hierarchy is observed in most real cases. For example, the central 

processor resource is considered more important, and so on. 

We call state of the system the quantities of resources used defined by the vect or 
0( ,..., ).mr r r We recall that 

 0,1,..., 1ir p   and for a purely mathematical reason, we will fix 1p   and prime number. We can extend the 

state r of the system to a vector 
1 0 1( ,..., , , ,..., )n mr r r r r r   for types 

iT  of resources indexed by negative and positive 

integers ,...,0,...,i n m  . It is also necessary not to fix the numbers of coordinates n and m used to make possible 

the future addition of type of resources. 

Such a vector space can be represented by a rational number of the form: 

 1

1 0 1... ... ,   0,1,..., 1n m

n m jr r p r p r r p r p r p 

           (2) 

To use an ultrametric model, we will construct a complete metric space. The approach is to consider a vector of 

infinite coordinates of the form: 

 1

1 0 1... ... ... ...,   0,1,..., 1n m

n m jr r p r p r r p r p r p 

             (3) 

such that there exist integers n and m such that 0jr   for all j n  and 0jr   for all j m  . The space of these 

infinities of coordinates will be denoted pQ  in which we will define a metric as follows. Given two states ( )jx x  

and ( )jy y , the distance between the two states x  and y  noted ( , )p p
d x y x y   is equal to: 

( , )p p
d x y x y p     (4) 

such that   is the natural integer defined by: j jx y  for all j   and x y  . 

Proposition 3. 

The distance pd  between the two states x and y defined in equation (4) is ultrametric. 

Proof : 

For any three states 
1r , 

2r  and 
3r , this distance pd  verifies the following properties: 

- 1 2( , ) 0pd r r   if and only if 
1 2r r  

- 1 2 2 1( , ) ( , )p pd r r d r r  

-  1 3 1 2 2 3( , ) max ( , ), ( , )p p pd r r d r r d r r  

The first two properties follow from the definition of the p-adic distance from the p-adic absolute value. 

For the third property, called strong triangle inequality, we use the second property of Proposition 1: 

     
 

1 3 1 3 1 2 2 3 1 2 2 3

1 2 2 3

( , ) max ,

                                                               max ( , ), ( , )

p p p pp

p p

d r r r r r r r r r r r r

d r r d r r

        


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2.3. Ultrametric resource model 

Starting from the representation of the state by a rational number, we are interested in its representation in the 

completeness 
pQ  of the set of rational numbers equipped with the ultrametric distance 

pd . 

Each ball can be identified as a ball of radius R p ,  Z . The ball 
1(0)B  with center 0 and radius 1 will be 

denoted 
pZ . In this ultrametric space, any ball can be represented as a disjoint union of small balls. For example: 

0 1

0 1

1 1
...

1 1/ 1/
0 ... 0

(0) ( ) ( )
p p

j jj

p p p
j j j

B B a B a 








 

 

  Z  where 0 1...
,

j jj

pa a   Z  such that 
0x j  for ja  and 

0 0 1 1,..., n nx j x j    for 0 1...j j
a    . It is the famous property that, in an ultrametric space, any point of a ball can be 

considered as its center. 

2.4 Resource utilization 

2.4.1 Mathematical formulation 

In our model, a p-adic ball represents a set of resource usage states of a system by fixing the usage of some resource. 

For example: 

- The resource utilization 
1/ ( )j

j pR B a , which is the ball with center ja  and radius 1/ p , 

 1/ 0( ) :j

j p pR B a x x j   Z , is equal to the uses of all the resources while fixing j the utilization of the resource 

0T  . 

- Resource usage 
1/ ( )ji

ji pR B a , which is the ball with center 
jia  and radius 1/ p , 

 1/ 0 1( ) : ,ji

ji p pR B a x x j x i    Z , is equal to the usages of all resources while setting j the usage of resource 

0T  and i the usage of resource 
1T  . 

A resource utilization, which is a state of the system, is a point in space pQ . It is a ball of radius zero. The partition 

of a ball into disjoint balls of smaller radii corresponds to a partition of a resource use into disjoint sub -uses at a 

deeper level in the resource hierarchy. 

An elementary use is a point of pQ  . But for more practical cases, balls of finite radius are used. 

The examples below define balls of finite radius: 

- The utilization of resource 
0T  is greater than 90%. 

- The utilization of resource 
0T  is greater than 90% and that of resource 

1T  is greater than 60%. 

- Thresholds are useful for dimensioning the quantities of resources necessary fo r a system, and for decisions on 

the expansion of such resources: Probability of using resource 
0T  is greater than 

0p , that of 
1T  is greater than 

1p , 

and so on. 

2.4.2 Probability of resource utilization governed by a diffusion equation 

Now, let ( , )q x t  be the probability that the system is in state x at any time t, and ( , )q B t  the probability that the 

state of the system at time t belongs to a ball  0
p

B B    with center 0 and radius p  ,   Z . This probability 

can be represented by an integral as a function of a measure   defined on the space pQ : 

( , ) ( , ) ( )
B

q B t q x t dx


    (5) 

Proposition 4. 
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The probability of using resources ( , )q x t  can be expressed by: 

 
( , )

( | ; ) ( , ) ( | ; ) ( , ) ( )
p

q x t
p x y t q y t p y x t q x t dy

t



 

 Q  (6) 

Proof : 

To better understand the proof, let us first take the case of any state 
ie  belonging to a set of real numbers. The 

probability of being in this state 
ie  at time t  , denoted ( , )iq e t   , is equal to: 

 ( , ) ( , ) ( | , ) ( , ) ( | , ) ( , )i i i j j j i i

j i

q e t q e t p e e t q e t p e e t q e t 


     

The quantity ( , )iq e t  indicates the probability that the system was already in state 
ie  at time t. Another possibility 

added to this is  that the system was in state 
je  at time t and becomes in state 

ie  at time t  . The probability 

( | , )i jp e e t  defines this transition from state 
je  to state 

ie . This is why we have the term ( | , ) ( , )i j jp e e t q e t  with the 

duration   for all the values j i . A last possibility that we must subtract from the existence of the state 
ie  at the 

instant t is that the system has become at another state at time t  . This is why we have the term ( | , ) ( , )j i ip e e t q e t  

with the duration   for all values j i  . 

And we have the differential notation for   tending to 0: 

 
( , ) ( , )

( | ; ) ( , ) ( | ; ) ( , )i i

i j j j i i

j i

q e t q e t
p e e t q e t p e e t q e t



 

 
   

 
( , )

( | ; ) ( , ) ( | ; ) ( , )i

i j j j i i

j i

dq e t
p e e t q e t p e e t q e t

dt 

   

Now, in the space pQ , we can proceed to the same step of the demonstration. We have by analogy: 

 
( , )

( | ; ) ( , ) ( | ; ) ( , ) ( )
p

q x t
p x y t q y t p y x t q x t dy

t



 

 Q  

 

In the case where the transitions are homogeneous in time, that is to say that ( | ; )i jp e e t  are independent of time, 

( | ; ) ( | )i j i jp e e t p e e , we have: 

 
( , )

( | ) ( , ) ( | ) ( , ) ( )
p

q x t
p x y q y t p y x q x t dy

t



 

 Q  (7) 

In the case where the transition is symmetric, i.e. ( | ) ( | )p x y p y x , we have: 

 
( , )

( | ) ( , ) ( , ) ( )
p

q x t
p x y q y t q x t dy

t



 

 Q  (8) 

when the distance between them increases, and vice versa. We can then set ( | )p x y  as defined in equation (9) for 

any number: 

1
( | )

p

C
p x y

x y







 (9) 

where C  is a normalizing constant. The choice of   depends on the characterization of the transition according to 

user behaviors: arrival processes, and service demand laws. 

Proposition 5. 
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The probability of using resources ( , )q x t  is governed by the differential equation (10): 

0

( , )
( , ),    with ( ,0) ( )

q x t
D q x t q x q x

t


 


 (10) 

where D  is the Vladimirov operator for a function of complex-valued p-adic variable: 

 
1

1 ( ) ( )
( )

( ) p
p

p

f x f y
D f x dy

x y






 



  

Qp
 (11) 

And  
1

1
( )

1
p

p

p






 


  


 

Proof : 

Starting from equation (8) and using the transition probability that we posed in (9), we obtain: 

 1

1

( , )
( , ) ( , ) ( )

( , ) ( , )
            ( )

p

p

p

p

Cq x t
q y t q x t dy

t x y

q y t q x t
C dy

x y





 










 

 










Q

Q

 

The integral on the right side of this equality is called Vladimirov's fractional derivative operator D . As well as the 

evolution of the probability of using resources is described by: 

( , )
( , )

q x t
D q x t

t





 

 

This equation (10) which defines the resource utilization is called the p-adic diffusion equation. The resolution of 

such an equation uses a Cauchy problem like the one we solved in [16], or as other authors have developed in 

[17][18]. 

 

3. APPLICATIONS 

We will take an example of the application of this new model. 

3.1 System definition 

Consider a system composed of 3 types of resources: T1, T2, T3. T1 has 3 resources, T2 and T3 has 2 resources 

each. The resource T1 is the most important of the considered system, then T2 and finally T3. 

The resources utilization on this system can be represented by the set 
5Q  , set of 5-adic numbers (p-adic whose p = 

5), since 5 is the most prime number greater than the maximum quantity of its resources. 

3.2 System Resource Usage Status 

The state of the system is represented by a 5-adic number. 

Example: 

- The utilization of 1 T1 resource, 1 T2 resource, and 1 T3 resource is represented by 
2 21 1 1 1 1 5 1 5 31r p p          . Here, 31 represents a 5-adic number and we will denote it 

5(31) . 

- The utilization of 2 T1 resources, 1 T2 resource, and 0 T3 resource is represented by 
2 2

52 1 0 2 1 5 0 5 (7)r p p          . 

- And so on. 

Table-1 represents the possible states of this system. 
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Table-1: Ultrametric model system states  

T1 T2 T3 
r 

(expression of Hensel) 

State of the 

system 

0 0 0 
20 0 0p p   

5(0)  

0 0 1 
20 0 1p p   5(25)  

0 0 2 
20 0 2p p   

5(50)  

0 1 0 
20 1 0p p   

5(5)  

0 1 1 
20 1 1p p   

5(30)  

0 1 2 
20 1 2p p   5(55)  

0 2 0 
20 2 0p p   

5(10)  

0 2 1 
20 2 1p p   

5(35)  

0 2 2 
20 2 2p p   5(60)  

1 0 0 
21 0 0p p   

5(1)  

1 0 1 
21 0 1p p   

5(26)  

1 0 2 
21 0 2p p   5(51)  

1 1 0 
21 1 0p p   

5(6)  

1 1 1 
21 1 1p p   

5(31)  

1 1 2 
21 1 2p p   

5(56)  

1 2 0 
21 2 0p p   5(11)  

1 2 1 
21 2 1p p   

5(36)  

1 2 2 
21 2 2p p   

5(61)  

2 0 0 
22 0 0p p   5(2)  

2 0 1 
22 0 1p p   

5(27)  

2 0 2 
22 0 2p p   

5(52)  

2 1 0 
22 1 0p p   5(7)  

2 1 1 
22 1 1p p   

5(32)  

2 1 2 
22 1 2p p   

5(57)  

2 2 0 
22 2 0p p   

5(12)  

2 2 1 
22 2 1p p   5(37)  

2 2 2 
22 2 2p p   

5(62)  

3 0 0 
23 0 0p p   

5(3)  

3 0 1 
23 0 1p p   5(28)  

3 0 2 
23 0 2p p   

5(53)  

3 1 0 
23 1 0p p   5(8)  

3 1 1 
23 1 1p p   5(33)  
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T1 T2 T3 
r 

(expression of Hensel) 

State of the 

system 

3 1 2 
23 1 2p p   5(58)  

3 2 0 
23 2 0p p   

5(13)  

3 2 1 
23 2 1p p   

5(38)  

3 2 2 
23 2 2p p   

5(63)  
 

The system therefore has 36 different states. 

3.3 Analyzes of distances between resource utilization states  

To calculate the distance between these states, we will take some examples: 

- State 1: 2 T1 resources, 1 T2 resource and 0 T3 resource (equivalent to 
1 5(7)r   ) 

State 2: 1 T1 resource, 0 T2 resource and 0 T3 resource (equivalent to 
2 5(1)r   ) 

The distance between these two states  is equal to 1 1 0 0

1 2 5 5 5 5
7 1 6 2 3 5 5 1d r r          

- State 1: 3 T1 resources, 2 T2 resources and 0 T3 resources (equivalent to 
1 5(13)r  ) 

State 2: 3 T1 resources, 1 T2 resource and 0 T3 resources (equivalent to 
2 5(8)r  ) 

The distance between these two states is equal to 1 1

1 2 5 5 5 5
13 8 5 5 5 0,2d r r          

- … 

The calculations allow us to obtain that these distances can only take one of the following 4 values: 5
 , 

05 , 15 , 
25 , that is 0, 1, 0.2 and 0.04. 

Chart-1 and Chart-2 represent the distances between two states of the system. They are called initial state and final 

state. 
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Chart-1: Distance between system states in 3D form 

 

Chart-2: Distance between system states as a plane coloring 
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It can be seen that the more the change affects the number of lower priority resources (T3 in this example), the 

distance between the two states is small. This is explained by the blue shift in Chart-1 and Chart-2. And the more the 

change is on the number of higher priority resources (T1 in this example), the distance between the two states is 

great. This is explained by the yellow color in Chart-1 and Chart-2. 

Example: We will start from state 
5(7) which is equal to T1 = 2, T2 = 1 and T3 = 0 resources used. 

- For a final state equal to 
5(32) : T1 = 2, T2 = 1 and T3 = 1 resources used. The change concerns the resources 

of T3. The distance between these states is 0.04 (blue in Chart-1 and Chart-2). 

- For a final state equal to 
5(57) : T1 = 2, T2 = 1 and T3 = 2 resources used. The change concerns the resources 

of T3. The distance between these states is still 0.04 (blue in Chart-1 and Chart-2). 

- For a final state equal to 
5(12) : T1 = 2, T2 = 2 and T3 = 0 resources used. The change concerns the resources 

of T2 which have a higher priority than those of T3. The distance between these states is 0.2. 

- For a final state equal to 
5(6) : T1 = 1, T2 = 1 and T3 = 0 resources used. The change concerns the resources 

of T1 which have a higher priority than those of T2 and T3. The distance between these states is 1 (yellow in 

in Chart-1 and Chart-2). 

Hence the importance of using our model in the case of hierarchical resources. 

3.4 The probability law of the quantities of resources used 

From these distances, we find that 35 pairs of states have a distance of 0, then 918 pairs of states with a distance of 

1, then 204 pairs of a distance of 0.2 and 68 pairs of a distance of 0.04. 

If we take the state transition probability equal to 

5

( , )
C

p x y
x y




, we have the normalization constant 

1 918 204 68
1 0, 2 0,04

C C C
      . We will find  

1

3638
C  . 

The probability of transition from a state x to a state y is therefore equal to 

5

1
( , )

3638
p x y

x y



 where 

5
x y designates the ultrametric distance between these two states which are 0 if x = y, 1 if x – y is not a multiple of 

5, 0.2 if x – y is a multiple of 5, and 0.04 if x – y is a multiple of 25. 

According to equation (10), the probability of using resources is governed by the equation 

0

0

( , )
( , ),    with ( ,0) ( )

q x t
D q x t q x q x

t


 


. 

Where   
5

0

5

1 ( , ) ( , )
( , ) 1

5

q x t q y t
D q x t dy

x y


 
  
  

Qp
. 

The advantage highlighted in this model is the combined study of the uses of the 3 types of resources. The separate 

study can lead to errors by not considering other resources. 

 

4. CONCLUSION 

p-adic numbers can be used to model hierarchical resource utilization. The importance of this type of modeling has 

been highlighted. We proved that the probability of resource utilization is governed by a Cauchy problem: a 

fractional differential equation, and particularly, with the Vladimirov operator. There are still many aspects to study: 

the existence of a stationary solution, in order to determine the asymptotic behavior of our model. 
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