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ABSTRACT 

 
Over the last decade, storage systems have experienced a 10-fold increase between their capacity and bandwidth. 

This gap is predicted to grow faster with exponentially growing concurrency levels, with future exascales delivering 

millions of nodes and billions of threads of execution. A critical component of future file systems for high-end 

computing is metadata management. This extended abstract presents ZHT, a zero-hop distributed hash-table, which 

has been tuned for the specific requirements of high-end computing. ZHT aims to be a building block for future 

distributed systems, such as parallel and distributed file systems, distributed job management systems, and parallel 

programming systems. ZHT has some important properties, such as being light-weight, dynamically allowing nodes 

join and leave, fault tolerant through replication, persistent, scalable, and supporting unconventional operations 

such as append (providing lock-free concurrent key/value modifications) in addition to insert/lookup/remove. The 

primary goal of ZHT is excellent availability, fault tolerance, high throughput, and low latencies. 
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1. INTRODUCTION 

The current architecture of high-end computing (HEC) systems is decades-old and has persisted as we scaled 

fromgigascales to petascales. In this architecture, storage is completely segregated from the compute resources and 

are connected via a network interconnect. This approach will not scale several orders of magnitude in terms of 

concurrency and throughput, and will thus prevent the move from petascales to exascale. One of the major 

bottlenecks in current state-of-the-art storage systems is metadata management. Metadata operations on parallel file 

systems can be inefficient at large scale. Early experiments on the BlueGene/P system at 16K-core scales shows the 

various costs (wall-clock time measured at remote processor) for file/directory create on GPFS [1]. Ideal 

performance would be to have a flat line. If care is not taken to avoid lock contention, performance degrades 

rapidly, with operations (e.g. create directory, create file, etc) that took milliseconds on a single core, taking over 

1000 seconds at 16K-core scales. [3, 4]. 

ZHT has been tuned for the specific requirements of highend computing (e.g. trustworthy/reliable 

hardware, fast networks, non-existent ”churn”, low latencies, and scientific computing data-access patterns), and we 

believe it is a good abstraction to build distributed metadata management for distributed file systems. 

 

1.1 Proposed work 

Future storage systems for high-end computing should support distributed metadata management, leveraging 

distributed data-structure tailored for this environment. The distributed data-structures share some characteristics 

with structured distributed hash tables [24], having resilience in face of failures with high availability; however, they 

should support constant time inserts/lookups/removes delivering low latencies typically found in centralized 

metadata management. Replication is used to ensure both metadata and data availability.  

We developed ZHT, a zero-hop distributed hash-table, which has been tuned for the specific requirements of high-

end computing (e.g. trustworthy/reliable hardware, fast networks, non-existent "churn", low latencies, and scientific 
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computing data-access patterns). The primary goal of ZHT is excellent availability, fault tolerance, high throughput, 

and low latencies. The report also discusses the use of ZHT as the distributed metadata management in the FusionFS 

distributed filesystem. 

 

2. RELATED WORK  
 

DHTs have an important role in building support for scalable meta-data across extreme scale systems. Some of the 

DHTs from the literature are Kademlia[11], CAN[12], Chord [13], Pastry[14], Tapestry[15], Memcached[16], 

Dynamo[2], Cycloid[17], Ketama[18], RIAK[19], Maidsafe-dht[20], and C-MPI[8].  

 

It is important to point out that several key features of traditional DHTs are not necessary in HEC. Most HEC 

environments are batch oriented, which implies that a system that is configured at run time, generally has 

information about the compute and storage resources that will be available. This means that the amount of resources 

(e.g. number of nodes) would not change dynamically, and the only reason to decrease the allocation is either to 

handle failed nodes, or to terminate the allocation. Furthermore, nodes in HEC are generally reliable and have 

predicable uptime (nodes start on allocation, and nodes shut down on deallocation). This implies that node ”churn” 

in HEC is virtually non-existent. HEC systems are generally locked down from the outside world, behind login 

nodes and firewalls, and although authentication and authorization is still needed, full communication encryption is 

wasteful for a large class of scientific computing applications that run on many HEC systems. 

 

Table -1 : DHT implementations.  

 

  Name Impl. 
Routing 

Time  
Persistence  

Dynamic 

membership 

 

Append 

 

Cassandra 38  Java  log(N)  

 

Yes  Yes  

 

No 

 

Memcached 

[20]  

 

 C   

 

2 

 

No 

 

No 

 

No 

 

C-MPI [26]  

 

C/MPI  log(N)  No No No 

Dynamo [21]  Java 0 to 

log(N)  

 

Yes  Yes  No 

ZHT [14]  C++ 0 to 2 Yes Yes Yes 

 
 

There has been some uptake recently in using traditional DHTs in HEC, namely the C-MPI [8] project, in 

which the Kademlia DHT has been implemented and shown to run well on 1000 nodes on a SiCortex machine. 

Another recent project using DHTs on a HEC is DataSpaces [7], which deploys a DHT on a Cray XT5 to coordinate 

in-memory data management for simulation workflows. Both C-MPI and DataSpaces fail to pay careful attention to 

latency by ensuring constant time operations. Furthermore, they do not decouple the metadata from the data 

management, causing potentially poor data locality. Amazon Dynamo [2] is arguably similar to the proposed ZHT, 

also claiming to be a zero-hop distributed hash-table. However, it’s a non-opensource project, which makes its 

adoption not possible.  

  

3. ZHT:AZERO HOP DISTRIBUTED HASHTABLE  

We propose a new data-structure, named ZHT (Zero hop distributed Hash Table), which has been simplified and 

tuned for the specific requirements of High-End Computing (HEC). The ZHT features are described in this section. 

 

Hash Functions: ZHT uses the SDBM hash function, due to its simple implementation, consistency across different 

data types (especially strings), and efficient performance. 
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Membership Table: The proposed hash functions map an arbitrary long string directly to an index value, which 

can then be used to efficiently retrieve the communication address (e.g. network name, IP address, MPI-rank) from a 

membership table. 

 

Failure Handling: ZHT gracefully handles failures, by lazily tagging nodes that do not respond to requests 

repeatedly as failed (using exponential backoff). Once nodes are marked as down, they are assumed never to return 

until ZHT is restarted. 

 

Replication: ZHT uses replication to ensure data stored persists during failures. New data created is pro-actively 

replicated to nodes in close proximity in the membership ID space. Ideally, once we support the network-aware 

topology of node ids (part of the future work section), the replication will consume the least amount of shared 

network resources by communicating only with neighbors in close proximity, and therefore improving scalability at 

extreme scales. We implemented replication on sever side. When requests (insert and remove) are sent to servers, a 

thread will send the same request to corresponding replicas asynchronously. This will certainly introduce some 

overhead due to the sharing resource (CPU and network bandwidth). But our implementation don’t introduce too 

much extra overhead when increase the number of replicas. 

 

Persistence: ZHT is a distributed in-memory data-structure. We use a light-weight persistent hashtable with 

Kyotocabinet [6], which stores the ZHT state to persistent storage in real time. 

 

3.1 Implementation  

Application Programming Interface: The application programming interface (API) of ZHT is kept simple and 

follows similar interfaces for hash tables. The four operations ZHT will support are 1. bool insert(key, value); 2. 

value retrieve(key); 3. bool remove(key), and 4. bool broadcast(key, value). The insert operation will first hash the 

key to obtain the location of the node where the value will be inserted; existing values will be overwritten; 

replication occurs asynchronously between the hashed destination and its neighbors. The retrieve operation would 

return the value from ZHT if it existed. The remove operation would remove the value with the associated key. The 

broadcast operation would transmit the key/value pair over the edges of the spanning tree with the goal to distribute 

the key/value pair to all the caches.  

 

Implementation Details: This work is aimed at HEC systems, so it was critical to identify a programming language 

supported unanimously across all current HEC systems; C/C++ was the best candidate from both a portability and 

performance perspective. FUSE and GridFTP is implemented in C, while the ZHT is in C++. GridFTP supports a 

variety of communication protocols, such as UDT and TCP; it supports GSS-API authentication of the control 

channel and data channel, and supports user-controlled levels of data integrity and/or confidentiality. ZHT used a 

proprietary binary UDP-based protocol; we are also investigating alternative communication protocols such as TCP, 

MPI, and BMI. 

 

 

4. PERFORMANCE EVALUATION 

In our implementation we completed an prototype of ZHT, which supports three of the four proposed operations, 

namely insert/lookup/remove. Prior to engaging in implementing ZHT, we explored the feasibility of using existing 

DHT implementations  (Tapestry, Chord, Maidsafe-dht, and C-MPI), but came to the conclusion that they are all too 

heavy weight for HEC, were not feature complete, or had significant dependencies to resolve. The preliminary ZHT 

implementation was implemented in C++, and uses a proprietary binary TCP-based and UDP-based communication 

protocol.  
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Chart -1: ZHT throughput on SiCortex 

 

 
Chart -2: ZHT latency on SiCortex 

 

We performed experiments (on the SiCortex SC5832 at ANL, 972 nodes with 5832 cores) to measure the overheads 

of insert/remove/lookup. Overheads were significantly lower than the DHTs that were investigated, with about 10ms 

per operation at modest scales of 5832-cores (as opposed to 30 ms for Chord and 1000 ms for Maidsafe-DHT at 16- 

core scales). Figure 1 shows the throughput for ZHT for a range of scales from 1 node (6 cores) to 940 nodes (5640 

cores). Each client (1 client per node) performs 100K random 132-byte key inserts, 100K lookups, and 100K 

removes. The throughputs in operations per second increases near linearly with scale, reaching 85K ops/sec at 940 

nodes; the ideal throughput would have been 156K ops/sec. Also, as shown in the figure, the UDP protocol has 

better performance than TCP, which is near 100k ops/sec, and would might scale better in even large scale, 

nevertheless, based on the volatile propriety of UDP and bottleneck of network, UDP protocol in our 

implementation will lose performance when the network is saturated, after all, it does not hold a reliable way. 

Compared with the ideal linearly speed-up, ZHT hits more-than-half of the performance of it, it cannot be 

considered as a perfect work, however, it makes a giant progress in MTC.  

Figure 2 shows the latency incurred by various operations on both TCP and UDP. TCP implementation 

keeps the latency within 11 ms while UDP does it with 9ms.  
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Chart -3: ZHT efficiency on SiCortex 

 

 
Chart -4: ZHT aggregated throughput on SiCortex 

 

 

 

Additionally, we note that when the network saturates, TCP shows a better scalability and reliability. The 

performance differences among three basic operations (insert, lookup and remove) are very small and tend to be 

negligible. The time per operation starts at about 6ms at the smallest scales of 2 nodes (1 node scales is extremely 

fast because it has no network communication), and increases to 11ms to 12ms at the largest scale of 972 nodes. 

Since ZHT uses a direct 0-hop algorithm and that the majority of the overhead comes from network communication, 

it is not expected for the time per operation to increase significantly with larger scales. 

 

5. CONCLUSIONS  

The ideas in this position paper are transformative due to their departure from traditional HEC architectures and 

approaches, while proposing radical storage architecture changes based on distributed file systems to make exascale 

computing a reality. This paper addresses fundamental technical challenges that will become increasingly harder to 
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address with existing solutions due to a declining MTTF of future HEC systems. This work will open doors for 

novel research in programming paradigm shifts (e.g. Many-Task Computing [3]) needed as we approach exascale. 

ZHT optimized for high-end computing systems was architected and implemented as a foundation in the 

development of fault-tolerant, high-performance, and scalable storage systems. We performed an extensive 

performance evaluation of ZHT. We have measured the performance of ZHT over TCP and UDP at scales up to 

5400-cores on a SiCortex SC5832 supercomputer. ZHT is an open source project, available at [9]. 

Our work will benefit the ’Many-Task Computing’ paradigm that bridges the gap between high-throughput 

computing and high-performance computing, generally producing both compute-intensive and data-intensive 

workloads, and has been shown to contain a large set of scientific computing applications from many domains. 

Our main message is that by combining lessons learned from parallel file systems and distributed file 

systems, along with new advances in hardware (e.g. solid state memory), we can define a new storage architecture 

that is optimized for future high-end computing at exascale and has the potential to deliver a viable storage 

architecture for future extreme scale high-end computing. The position of this paper is revolutionary as it breaks the 

accepted practice of segregating storage resource from computational resources, and leveraging the abundance of 

processing power, bisection bandwidth, and local I/O commonly found in future high-end computing systems. 
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