ENERGY STORAGE SYSTEM FOR
HEATING AND COOLING APPLICATION
USING PARAFFIN WAX

Rana Tarang¹, Mevada Sangeet², Manavar Mandakini³, Rajput Bhavik⁴, Lalit Patel⁵

¹ Student, Mechanical Engineering, Samarth engineering college, Gujarat, India
² Student, Mechanical Engineering, Samarth engineering college, Gujarat, India
³ Student, Mechanical Engineering, Samarth engineering college, Gujarat, India
⁴ Student, Mechanical Engineering, Samarth engineering college, Gujarat, India
⁵ Student, Mechanical Engineering, Samarth engineering college, Gujarat, India

ABSTRACT
Energy storage system is a method made to store high grade or low grade energy of a system, which can be used in nearby future. Energy storage come to be a key element in reaching goals in energy sustainability that lead to energy and price savings. A scheme that stores energy is occasionally called an accumulator. This Accumulator can be used to store leftover heat energy, of waste water of a system, by a process called Waste Water Energy Recovery (WWER). Waste heat is the vacant heat (secondary/low-grade heat) of a system, which is given to the surrounding (in the form of thermal energy) by a heat engine in a thermodynamic process. This heat can be beneficial in the majority of heating applications; however, trouble is faced for storage and transportation of waste heat. Power stations, Industries, and electronics marketplace are the major birthplaces of waste heat. The Heat Accumulator or Thermal energy storage (TES) system to be used is a Double tube Heat Exchanger with Phase Change Material (paraffin wax) as one of its essential components. Paraffin wax is a ‘latent’ heat storage material which works on its solid-liquid phase cycle.

1. INTRODUCTION
Phase change materials (paraffin wax) are material used as ‘Latent’ heat storage materials in heat storage units. The heat transfer takes place, when this material undergoes phase change from solid to liquid, or liquid to solid. Basically, paraffin wax perform like conventional storage materials; but their temperature does not rise as they absorb heat energy from a heat source. Unlike conventional (sensible) storage materials, paraffin wax absorbs and reject thermal energy at approximate constant temperature. Paraffin wax can absorb and store 5–14 times more heat energy per unit volume in comparison to sensible storage materials such as water, masonry, or rock. Paraffin wax are available in large number of heat of fusion range in market, so they can be used for many applications of various temperature ranges.

Thermal energy storage (TES) is a system which can store high-grade or low-grade heat energy of a system, which can be used in near future. A device which stores energy is called an Accumulator. In today’s scenario, in any system such as power generation, industrial processes and electronics; out of total energy available, only 35%-48% is converted to useful work and remaining 52%-64% is available waste heat, which can be utilised using proper TES process. TES system is of two types:

1.1 Sensible Heat Storage (SHS)
This system absorbs, stores and releases heat energy in form of sensible heat (no phase change occurs). This is conventional method of thermal energy storage. As the amount of heat to be stored increases, temperature of system
increase; which is a limitation of this system along with large space occupancy and transportation issues. Examples of sensible heat storage materials are water, masonry, rocks, sand, etc.

1.2 Latent heat storage (LHS)
It works on the phenomenon of heat absorption or release when a storage material (paraffin wax) undergoes a phase change. This system using paraffin wax is a functional and productive way of storing heat and gives advantages of high-energy storage density and isothermal nature of the storage process. There are large numbers of paraffin wax that melt and solidify at a wide range of temperatures, making them attractive in a number of applications.

So, based on above mentioned previous work, A LHS system using paraffin wax can be developed to store waste heat, of waste water of a system by Waste water energy recovery (WWER) process.

2. OBJECTIVE & ADVANTAGES
Heat Accumulator will be designed using Phase Change Material as latent heat storage material. This accumulator will be used for secondary or low-grade heat storage from waste water of a system by the process of Waste Water Energy Recovery (WWER). As the total waste heat obtained in any existing system; like Power plants, Industrial processes, Electronics is above 50% of total energy available, this recovered energy can make a major difference for improving system efficiency without changes energy inputs and it will act as an alternative to renewable recourse available.

Here, heat accumulator is a shell and tube (Double tube) heat exchanger with paraffin wax filled in the heat exchanger cylinder. Paraffin wax used is Paraffin Wax RT50. Heat transfer fluid will pass through the inner tube of heat exchanger.

As the hot fluid passes through double tube, heat from it will be absorbed by paraffin wax (it is called charging process), and temperature of hot fluid decrease. Heat could be stored in paraffin wax for long duration of time. Now, when the cold fluid passes through double tube, heat is rejected by paraffin wax (discharging process), temperature of cold fluid is raised. This whole system work as thermal energy storage (TES) units.

Advantages of using paraffin wax heat exchanger over conventional methods are
Paraffin wax absorbs and release heat at a nearly constant temperature.
Paraffin wax stores 5 to 14 times more heat per unit volume then sensible storage material such as water, masonry, or rock.
They can be used under renewable energy. Renewable and alternative energy sources provide a method of energy generation that does not rely on fossil fuels.
3. METHODOLOGY

In the present model, water is heated with help of an electric heater (to demonstrate heat pump and waste water source) and afterwards it is passed through the heat exchanger (inner Cu tube), where heat will be absorbed by paraffin wax and data for analysis is noted down. After whole volume of paraffin wax in heat exchanger is melted, cold water (as clean fluid) is supplied to the heat exchanger and it will absorbed heat from paraffin wax. The submersible pumps are used for water circulation and valve system is used for changing flow rate. K type thermocouples are used for temperature measurement at various locations and flow meter is used for flow rate measurement.

Paraffin wax RT50 is used because Paraffin is safe, reliable, predictable, less expensive, and non-corrosive. They are chemically inert and stable below 500 centigrade, show little volume changes on melting and have low vapor pressure in the melt. LTH systems with paraffin generally have very long freeze–melt cycle. They also show congruent melting and good nucleating properties.
4. DESIGN & ACTUAL WORKING MODEL

![Design Model](image1.png)

Fig -2: Design

![Actual Model](image2.png)

Fig -3: Actual Model
5. RESULT
Based on the data collected, graphs are plotted for analysis and observation of experiment.

Chart-1: Comparison of paraffin wax’s average temperature at different inlet HTF temperatures

Chart-2: Comparison of water temperature difference (outlet-inlet) at various inlet HTF temperatures
Chart-3: Comparison of average temperature of paraffin wax at various HTF flow rates with Th= 80 Centigrade

Chart-4: Comparison of water temperature difference (outlet-inlet) at various HTF flow rates with Th= 80 Centigrade
6. CONCLUSION
Paraffin wax can be used over conventional sensible heat storage systems, as they have comparatively very high latent heat of fusion. Thermal energy storage system (TES) using paraffin wax can work as an alternative to renewable energy sources. In the paraffin wax, heat transfer takes place by combination of convection and conduction phenomenon, but in the melting process heat transfer majorly occur through conduction and after a while, convection governs the heat transfer phenomena. For a WWER System, a heat accumulator with paraffin wax as it works best when the inlet heat transfer fluid (HTF) temperature is around 75-80˚C or above as the melting temperature range of paraffin wax is 45-54˚C. With our current dimensions of Heat Accumulator, the most efficient flow rate for maximum heat transfer is 60 l/h.

Table-1. Performance parameters measured

<table>
<thead>
<tr>
<th>T_h (°C)</th>
<th>T_\text{ini} (°C)</th>
<th>T_\text{end} (°C)</th>
<th>Q_{\text{max}} (kJ)</th>
<th>Q_{\text{ch}} (kJ)</th>
<th>Q_{\text{HE}} (kJ)</th>
<th>Q_{\text{PARAFFIN WAX}} (kJ)</th>
<th>\eta_{\text{theory}} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>34.1</td>
<td>58.1</td>
<td>245.615</td>
<td>98.24</td>
<td>1</td>
<td>97.24</td>
<td>35.92</td>
</tr>
<tr>
<td>75</td>
<td>34</td>
<td>60.5</td>
<td>251.175</td>
<td>102.75</td>
<td>1</td>
<td>101.75</td>
<td>40.50</td>
</tr>
<tr>
<td>500 l/h</td>
<td>34.2</td>
<td>62.8</td>
<td>246.12</td>
<td>110.115</td>
<td>1</td>
<td>109.115</td>
<td>44.74</td>
</tr>
<tr>
<td>200 l/h</td>
<td>34.2</td>
<td>65.7</td>
<td>255.905</td>
<td>131.12</td>
<td>1</td>
<td>130.12</td>
<td>51.23</td>
</tr>
<tr>
<td>60 l/h</td>
<td>34</td>
<td>68.3</td>
<td>267.948</td>
<td>155.95</td>
<td>1</td>
<td>154.94</td>
<td>57.82</td>
</tr>
</tbody>
</table>
7. REFERENCES