(μ, φ) – FUZZY LIE ALGEBRAS OVER A (μ, φ) – FUZZY FIELD

Priya.M¹, Geetha.K²

 ¹Research Scholar ,Department of Mathematics,Vivekanandha College of Arts & Sciences For Women (Autonomous),Namakkal,Tamilnadu,India-637205.
 ² Assistant Professor ,Department of Mathematics,Vivekanandha College of Arts & Sciences For Women (Autonomous),Namakkal,Tamilnadu,India-637205.

ABSTRACT

The aim of this paper is to introduce and investigate the concept of (μ, φ) – fuzzy lie algebras over an (μ, φ) – fuzzy field and the relations belong to and quasi-coincidence with characterizations of $a (\in, \in V_q)$ – fuzzy lie algebras over $a (\in, \in V_q)$ – fuzzy field.

Keyword – fuzzy field, fuzzy Lie algebra, fuzzy point

1. INTRODUCTION

Zadeh [12] formulated the notion of fuzzy sets and after that many scholars developed fuzzy system of different algebraic structures. The ideas of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [10],has played a vital role in generating some different types of fuzzy subgroups. Using the belong-to relation (\in) and quasi- coincidence with relation (q) between fuzzy points and fuzzy sets, the concept of (μ, φ)- fuzzy subgroup was introduced by Bhakat and Das [4]. Akram [1] introduced (μ, φ)-fuzzy Lie subalgebras and investigated to some of its properties. Nanda[9] introduced fuzzy algebra over fuzzy field.It is natural to investigate similar types of generalization of the existing fuzzy subsystem.In[3],We introduced fuzzy Lie algebra over a fuzzy field and some properties were discussed.

In this paper, we introduce the concept of (μ, φ) - fuzzy Lie algebra over an (μ, φ) - fuzzy field and investigate some of its properties.

2. PRELIMINARIES

In this section we present some definition needed for our study. We denote a complete distributive lattice with the smallest element 0 and the largest element 1 by I. By a fuzzy subset of a nonempty set X, we mean a function from X to I.

2.1 Definition [5].

Let X be a field and let F be a fuzzy subset of X. Then F is called a fuzzy field of X if

- (i) for all μ , φ in X, F(μ - φ)-F(μ) \wedge F(φ),
- (ii) for all μ , $\varphi \neq 0$ in X, $F(\mu \varphi^{-1}) F(\mu) \wedge F(\varphi)$.

2.2 Remarks It is seen that if F is a fuzzy field of X, then

$$F(0)-F(1)-F(\mu) = F(-\mu)=F(\mu^{-1})$$
 for all $\mu \neq 0$ in X.

2.3 Definition

Let A be a fuzzy subset of a Lie algebra L. Then A is called a fuzzy Lie algebra of L over a fuzzy field F, if for all $x, y \in L, \mu \in X$,

(i) $A(x, y) \ge A(x) \land A(y)$, (ii) $A(\mu x) \ge F(\mu) \land A(x)$, (iii) $A([x, y]) \ge A(x) \land A(y)$.

3. THE RELATIONS BELONG TO AND QUASI-COINCIDENCE WITH

Let L be a Lie algebra over a field X, let $A: L \to [0,1]$ be a fuzzy set on L, and let $F: X \to [0,1]$ be a fuzzy set on X. The support of fuzzy set A is the crisp set that contains all elements of L that have nonzero membership grades in A.

3.1 Definition [10]

A fuzzy set $A: L \rightarrow [0,1]$ of the form

$$A(y) = \begin{cases} t \in (0,1], & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by x_t .

For a fuzzy point x_t and a fuzzy set A in a set L, Pu and Liu [10] gave meaning to the symbol $x_t \mu A$ where $\mu \in \{\in, q, \in V_q\}$.

A fuzzy point x_t is said to belong to a fuzzy set A, written as $x_t \in A$, if $A(x) \ge t$. A fuzzy point x_t is said to be quasi-coincidence with a fuzzy set A, denoted by $x_t qA$, if A(x) + t > 1

For a fuzzy set $A: L \to [0,1]$ and $t \in (0,1]$, we denote $A_t = \{x \in L: x_t \in A\}$.

The following notations are used in this paper

- 1. $\in V_q$ means that either belong to or quasi-coincident with,
- 2. $\bar{\mu}$ means that μ does not hold.

Let min{*t*,*s*} be denoted m(t,s) and let max{*t*,*s*} be denoted by M(t,s). Take I = [0,1] and $\Lambda = min$, V = max with respect to the usual order in definitions 2.1 and 2.3

3.2 Lemma A fuzzy subset F of a field X is a fuzzy field, if and only if it satisfies the following conditions:

(i) for all μ , φ in X, $\mu_t, \varphi_s \in F \Rightarrow (\mu - \varphi)_{m(t,s)} \in F$ (ii) for all μ , $\varphi \neq 0$ in $X, \mu_t, \varphi_s \in F \Rightarrow (\mu \varphi^{-1})_{m(t,s)} \in F$, for all $t, s \in (0,1]$.

Proof. (i)

Given, for all $\mu, \varphi \in X$, $\mu_t, \varphi_s \in F$ To prove. $(\mu - \varphi)_{m(t,s)} \in F$ By definition 2.1 $F(\mu_t - \varphi_s) - F(\mu_t) \wedge F(\varphi_s)$ $F(\mu_t - \varphi_s) = F(\mu_t) \wedge F(\varphi_s,), F(\mu_t - \varphi_s) = F(\mu_t \wedge \varphi_s)$ $F(\mu_t - \varphi_s) = \min(t, s) \in F, (\mu - \varphi)_{m(t,s)} \in F$ Conversely, given $(\mu - \varphi)_{m(t,s)} \in F$, To prove, $\mu_t, \varphi_s \in F$ Now, $F(\mu_t - \varphi_s) = F(\mu_t \wedge \varphi_s)$, $F(\mu_t - \varphi_s) = F(\mu_t) \wedge F(\varphi_s)$, $F(\mu_t - \varphi_s) - F(\mu_t) \wedge F(\varphi_s)$ Therefore, $\mu_t, \varphi_s \in F$, for all μ in X. (ii)Given, for all $\mu, \varphi \neq 0$ in X, $\mu_t, \varphi_s \in F$ To prove. $(\mu\varphi^{-1})_{m(t,s)} \in F$ By definition 2.1. $F(\mu_t\varphi_s^{-1}) - F(\mu_t) \wedge F(\varphi_s)$, $F(\mu_t\varphi_s^{-1}) = F(\mu_t) \wedge F(\varphi_s)$ $F(\mu_t\varphi_s^{-1}) = F(\mu_t \wedge \varphi_s)$ $F(\mu_t\varphi_s^{-1}) = \min(t,s) \in F$ Therefore, $(\mu\varphi^{-1})_{m(t,s)} \in F$, Conversely, $Given, (\mu\varphi^{-1})_{m(t,s)} \in F$, $F(\mu_t\varphi_s^{-1}) = F(\mu_t) \wedge F(\varphi_s)$ $F(\mu_t\varphi_s^{-1}) = F(\mu_t) \wedge F(\varphi_s) \in F$, Therefore, $\mu_t, \varphi_s \in F$, for all $\mu, \varphi \neq 0$ in X

3.3 Lemma Let L be a Lie algebra over a field X. Then a fuzzy subset A of Lie algebra L is a fuzzy Lie algebra over a field F of X if and only if it satisfies the following conditions:

 $\begin{array}{ll} (i) & x_{t,}y_{s}\epsilon A \Rightarrow (x-y)_{m(t,s)}\epsilon A \\ (ii) & x_{t}\epsilon A, \, \mu_{r}\epsilon F \Rightarrow (\mu x)_{m(r,t)}\epsilon A \\ (iii) & x_{t}y_{s}\epsilon A \Rightarrow ([x,y])_{m(t,s)}\epsilon A, \end{array}$

For all x, y \in L, for all $\mu \in X$, for all t, s, r (0,1].

Proof.

Given $x_t, y_s \in A$ From Definition.2.2. $A(x - y) - A(x) \land A(y)$ $A(x_t - y_s) - A(x_t) \wedge A(y_s), A(x_t - y_s) = A(x_t \wedge y_s)$ $A(x_t - y_s) = \min(t, s) \epsilon A, (x - y)_{m(t,s)} \epsilon A$ Therefore, $(x - y)_{m(t,s)} \epsilon A$ Conversely, $(x - y)_{m(t,s)} \epsilon A$, $A(x_t - y_s) = \min(t, s) \epsilon A$ $A(x_t - y_s) = A(x_t \wedge y_s), A(x_t - y_s) - A(x_t) \wedge A(y_s) \epsilon A$ Therefore, $x_t, y_s \in A$ (ii)Given, $x_t \in A$, $\mu_r \in F$ To prove, $(\mu x)_{m(r,t)} \in A$, $A(\mu x) - F(\mu) \wedge A(x), \ A(\mu_r x_t) - F(\mu_r) \wedge A(x_t),$ $A(\mu_r x_t) = F(\mu_r) \land A(x_t), A(\mu_r x_t) = F(\mu_r) \land A(x_t) \in A$ $A(\mu_r x_t) = \min(r, t) \in A$ Therefore, $(\mu x)_{m(r,t)} \epsilon A$ Conversely, to prove, $x_t \in A$, $\mu_r \in F$ Given, $(\mu x)_{m(r,t)} \in A$, $A(\mu_r x_t) = \min(r, t) \in A$ $A(\mu_r x_t) = F(\mu_r) \land A(x_t) \in A, A(\mu_r x_t) - F(\mu_r) \land A(x_t)$ Therefore, $x_t \in A$, $\mu_r \in F$ (iii)Consider $x_t, y_s \in A$ To prove, $([x, y])_{m(t,s)} \in A$, $A([x_t, y_s]) - A(x_t) \wedge A(y_s),$ $A([x_t, y_s]) = A(x_t) \wedge A(y_s)$ $A[x_t], A[y_s] = A(x_t) \wedge A(y_s), ([x_t, y_s]) \in A = m(t, s) \in A$ Therefore, $([x, y])_{m(t,s)} \in A$ Conversely, Consider, $([x, y])_{m(t,s)} \in A$, to prove $x_{t,y_s} \in A$

 $([x, y])_{m(t,s)} \in A, ([x_t, y_s]) \in A = m(t, s) \in A,$ $A[x_t], A[y_s] = A(x_t) \wedge A(y_s), A([x_t, y_s]) - A(x_t) \wedge A(y_s)$ Therefore, $x_t, y_s \in A$.

4. (μ, φ) FUZZY LIE ALGEBRAS OVER AN (μ, φ) – FUZZY FIELD

let μ and φ denote any one of \in , q, $\in Vq$ unless otherwise specified.

4.1 Definition

Let X be a field and let $F: L \rightarrow [0,1]$ be a fuzzy subset of X. Then F

is called (μ, φ) -fuzzy field of X, if it satisfies the following conditions:

(i) For all μ, φ in X, $\mu_t \alpha F, \varphi_s \alpha F \Rightarrow (\mu - \varphi)_{m(t,s)} \varphi F$,

(ii) For all $\mu, \varphi \neq 0$ in X, $\mu_t \alpha F, \varphi_s \alpha F \Rightarrow (\mu \varphi^{-1})_{m(t,s)} \varphi F$

for all t,s ϵ (0,1].

4.2 Definition

Let L be a Lie algebra over a field X, and let $F: L \to [0,1]$ be an (μ, φ) -fuzzy field of X. Then a fuzzy subset $A: L \to [0,1]$ is called an (μ, φ) -fuzzy Lie algebra of L over an (μ, φ) -fuzzy field F of X, if it satisfies the following conditions:

(i) $x_t \alpha A, y_s \alpha A \Rightarrow (x - y)_{m(t,s)} \varphi A$

(ii) $x_t \alpha A, \mu_r \alpha F \Rightarrow (\mu x)_{m(r,t)} \varphi A$

(iii) $x_t \alpha A, y_s \alpha A \Rightarrow ([xy])_{m(t,s)} \varphi A$

For all x, y ϵ *L*, for all $\mu \epsilon X$, for all *t*, *s*, $r \epsilon(0, 1]$.

4.3 Example

In the real vector space \mathbb{R}^3 , define $[x, y] = x \times y$, where ' \times ' is cross product of vectors for all $x, y \in \mathbb{R}^3$. Then \mathbb{R}^3 is a Lie algebra over the field \mathbb{R} .

$$A(a,b,c) = \begin{cases} 1 & if \ a = b = c = 0, \\ 0.5 \ if \ a \neq 0, b = 0, c = 0, \\ 0 & otherwise \end{cases}$$

and define $F : R \rightarrow [0,1]$ for all $\mu \in R$, by

$$F(\mu) = \begin{cases} 1 & if \ \mu \in Q \\ 0.5 & if \ \mu \in Q(\sqrt{2}) - Q, \\ 0 & if \ \mu \in R - Q(\sqrt{2}). \end{cases}$$

- (i) Then by actual computation, it follows that F is an (ϵ, ϵ) -fuzzy field of R and A is an (ϵ, ϵ) fuzzy Lie algebra of R³ over the (ϵ, ϵ)- fuzzy field F of R. also it can be verified that A is an $(\epsilon, \epsilon V_a)$ – fuzzy Lie algebra of R³ over an $(\epsilon, \epsilon V_a)$ - fuzzy field F of R.
- (ii) Let x = (1,0,0), y = (2,0,0), t = 0.4, s = 0.3. Then A(x y) = 0.5 and m(t,s) = 0.50.3. A(x-y) + m(t,s) < 1. So $(x-y)_{m(t,s)}\overline{q}A$. Hence A is not an (ϵ,q) – fuzzy Lie algebra.
- (iii) Let x = (0,0,0), y = (2,0,0), be elements in \mathbb{R}^3 and t = 0.4, s = 0.6. Then $x_t q A$ and $y_s q A$. But A(x - y) + m(t, s) = 0.5 + 0.4 < 1. This shows that $(x - y)_{m(t,s)}\overline{q}A$. Hence A is not a (q,q)- fuzzy Lie algebra.

4.4 Theorem Let X be a fuzzy field. Then fuzzy subset F: $X \rightarrow [0,1]$ is a fuzzy field if and only if F is an(ϵ, ϵ) – fuzzy field of X.

Proof.

The result follows immediately from Lemma 3.2.

4.5 Theorem Let L be a Lie algebra over a field X. Then a fuzzy subset A of L is a fuzzy Lie algebra over a fuzzy field F of X if and only if A is an (ϵ, ϵ) -fuzzy Lie algebra of L over an (ϵ, ϵ) -fuzzy field F of X.

Proof.

The result follows immediately from Lemma 3.2. and 3.3.

4.6 Theorem Let X be a fuzzy field and let fuzzy subset F: $X \rightarrow [0,1]$ be a fuzzy subset of X. Then F is an $(\epsilon, \epsilon V_{\alpha})$ -fuzzy field of X if and only if

- For all μ, φ in X, $F(\mu \varphi) \ge m(F(\mu), F(\varphi), 0.5)$, *(i)*
- For all $\mu, \phi \neq 0$ in *X*, $F(\mu \phi^{-1}) \ge m(F(\mu), F(\phi), 0.5)$. (ii)

Proof.

- Suppose that F is an $(\epsilon, \epsilon V_a)$ fuzzy field of X. It is clear that
- $m(F(\mu), F(\varphi), 0.5) = m(m(F(\mu), F(\varphi), 0.5))$

We consider two possibilities.

Case 1.

Let $m(F(\mu), F(\varphi)) < 0.5$. then, $m(F(\mu), F(\varphi), 0.5) = m(F(\mu), F(\varphi))$. If possible, let $F(\mu - \varphi) < m(F(\mu), F(\varphi), 0.5) = m(F(\mu), F(\varphi))$. Let r, $s \in (0,1]$ be such that $F(\mu - \varphi) < r < s$ $< m(F(\mu), F(\varphi)).$

Then $(F(\mu) < r, F(\varphi)) < s$ and so $\mu_r \in F$ and $\varphi_s \in F$. Also $F(\mu - \varphi) < m(r, s)$ shows that $(\mu - \varphi) < m(r, s)$ $\varphi_{m(r,s)} \in F$ and $F(\mu - \varphi) + m(r,s) < m(r,s) + m(r,s) < 1$ shows that $(\mu - \varphi)_{m(r,s)} \bar{q}$ F. Therefore $(\mu - \varphi)_{m(r,s)} \in VqF$, a Contradiction.

Case 2.

Let $m(F(\mu), F(\varphi)) - 0.5$. Then $m(F(\mu), F(\varphi), 0.5) = 0.5$. If possible, let $F(\mu - \varphi) <$ 0.5. Then $\mu_{0.5} \in F$, $\varphi_{0.5} \in F$, but $(\mu - \varphi)_{m(r,s)} \in VqF$, a contradiction. Therefore, it follows that $F(\mu - \varphi) < m(F(\mu), F(\varphi), 0.5)$. Similarly, (ii) is proved.

Conversely,

Suppose that conditions (i) and (ii) are satisfied by a fuzzy set F of X.

Let $\mu_r \in F$, $\varphi_s \in F$, for $\mu, \varphi \in X$ and r, $s \in (0,1]$. Then $F(\mu) - r$, $F(\varphi) - s$ and so $F(\mu), F(\varphi) - s$ m(r, s). Since F satisfies condition (i),

 $F(\mu - \varphi) - m(F(\mu), F(\varphi), 0.5) - m(r, s, 0.5).$

Now Consider the possibilities m(r,s) - 0.5 or m(r,s) > 0.5. If m(r,s) - 0.5, then m(r,s,0.5) =m(r,s) and $F(\mu - \varphi) - m(r,s)$ and $(\mu - \varphi)_{m(r,s)} \in F$. Then m(r,s) > 0.5, then m(r,s,0.5) = 0.5and $F(\mu - \varphi) - 0.5$. So, $F(\mu - \varphi) + m(r, s) - 0.5 + m(r, s) > 0.5 + 0.5 = 1$ and hence $(\mu - \varphi) - 0.5 + 0.5 = 1$ $(\varphi)_{m(r,s)}qF$. Therefore, it follows that if $\mu_r \in F$, $\varphi_s \in F$, then $(\mu - \varphi)_{m(r,s)} \in VqF$. Similarly, if $\mu_r \in F$, $\varphi_s \in F$ for all $\mu, \varphi \neq 0$ in X, then $(\mu \varphi^{-1})_{m(r,s)} \in VqF$. Hence F is an $(\in, \in Vq)$ -fuzzy field of X.

4.7 Theorem Let L be a Lie algebra over a filed X. Then a fuzzy subset A of L is an $(\in, \in Vq)$ fuzzy Lie algebra of L over an $(\in, \in Vq)$ - fuzzy field F of X if and only if

- For all $x, y \in L, A(x y) m(A(x), A(y), 0.5)$, *(i)*
- For all $x \in L$, $\mu \in X$, $A(\mu x) m(F(\mu), A(x), 0.5)$, (ii)
- For all $x, y \in L, A([xy]) m(A(x), A(y), 0.5)$. (iii)

Proof.

Suppose that A is an $(\in, \in Vq)$ -fuzzy Lie algebra of L over an $(\in, \in Vq)$ -fuzzy field F of X. It is clear that $m(F(\mu), A(x), 0.5) = m(m(F(\mu), A(x), 0.5))$. We consider two possibilities. Case 1.

Let $m(F(\mu), A(x)) < 0.5$). Then, $m(F(\mu), A(x), 0.5) = m(F(\mu), A(x))$. If possible, let $A(\mu x) < m(F(\mu), A(x), 0.5) = m(F(\mu), A(x))$. Let $t \in (0,1]$ be such that $A(\mu x) < t < 0$ $m(F(\mu), A(x))$. Then, $F(\mu) > t$ and A(x) > t. So, $\mu_t \in F$ and $x_t \in A$. But $A(\mu x) < t$ and $A(\mu x) + t$ $t < t + t < 2m(F(\mu), A(x)) < 1$. This shows that $(\mu x)_t \in VqA$, a contradiction. Case 2.

Let $m(F(\mu), A(x)) - 0.5$. If possible, let $A(\mu x) < m(F(\mu), A(x)) < 0.5$ = 0.5. Then we have $\mu_{0.5} \in F$ and $x_{0.5} \in A$, but $(\mu x)_{0.5} \in VqA$, a contraction. Therefore, it follows that $A(\mu x) - \mu_{0.5} \in F$ $m(F(\mu), A(x), 0.5)$. Thus, (ii) proved. Similarly, (i) and (ii) are proved.

Conversely, suppose that the condition (i), (ii) are satisfied by a fuzzy set A of L. Let $x_t \in A$, $y_s \in A$, for $x, y \in L$ and $t, s \in (0,1]$. Then, A(x) - t, A(y) - s and so m(A(x), A(y) - m(t, s)). Since A Satisfies condition (iii),

A([x, y]) - m(A(x), A(y), 0.5) - m(t, s, 0.5).

Now consider the possibilities m(t, s) - 0.5 or m(t, s) > 0.5. If m(t, s) - 0.5, then, m(t, s, 0.5) = m(t, s) and A([x, y]) - m(t, s), and so $([x, y])_{m(t,s)} > 0.5$, then, m(t, s, 0.5) = 0.5 and A([x, y]) - 0.5. So A([x, y]) + m(t, s) - 0.5 + m(t, s) > 0.5 + 0.5 = 1 and hence $([x, y])_{m(t,s)}qA$. Therefore, it follows that if $x_t \in A$, $y_s \in A$, then $([x, y])_{m(t,s)} \in VqA$. Similarly, if $x_t \in A$, $y_s \in A$, then $(x - y)_{m(t,s)} \in VqA$ and if $\mu_r \in F$, $x_t \in A$, then $(\mu x)_{m(r,t)} \in VqA$. Hence, A is an $(\in, \in Vq)$ -fuzzy Lie algebra of L over an $(\in, \in Vq)$ -fuzzy field F of X.

4.8 Proposition Let L be a Lie algebra over a field X. Then every (\in, \in) - fuzzy Lie algebra of L over an (\in, \in) -fuzzy field of X is an $(\in, \in Vq)$ -fuzzy Lie algebra of L over an $(\in, \in Vq)$ -fuzzy field of X. **Proof.**

Suppose A is an (\in, \in) fuzzy Lie algebra of L over an (\in, \in) fuzzy field F of X. Let $\mu, \varphi \in X, r, s \in (0,1]$. Since F is an (\in, \in) -fuzzy field of X, $\mu_r \in F$, $\varphi_s \in F \Rightarrow (\mu - \varphi)_{m(r,s)} \in F$, then $F(\mu - \varphi) - m(r,s)$ shows that $(\mu - \varphi)_{m(r,s)} \in VqF$. Similarly, $(\mu\varphi^{-1})_{m(r,s)} \in VqF$ for all $\mu, \varphi \neq 0$ in X. So F is an $(\in, \in Vq)$ -fuzzy field of X. Since A is an (\in, \in) - fuzzy Lie algebra, for $x, y \in L, t, s \in (0,1], x_t \in A, y_s \in A \Rightarrow ([x, y])_{m(t,s)} \in A$. Thus, A([x, y]) - m(t, s). Then by definition $([x, y])_{m(t,s)} \in VqA$ and $x_t \in A, \mu_s \in F \Rightarrow (\mu x)_{m(t,s)} \in VqA$. Hence A is an $(\in, \in Vq)$ -fuzzy Lie algebra of L over an $(\in, \in Vq)$ -fuzzy field F of X.

4.9 Remark The converse of this proposition may not be true as seen in the following example. **4.10 Example**

Let $L=R^3$ and [x,y]=x-y, where '-' is cross product for all $x, y \in L$. Then L is a Lie algebra over the field R. Define $A: R^3 \to [0,1]$ for all $x = (a, b, c) \in R^3$ by

$$A(a, b, c) = \begin{cases} 0.6 & \text{if } a = b = c = 0, \\ 0.8 & \text{if } a \neq 0, b = 0, c = 0, \\ 0.5 & \text{otherwise} \end{cases}$$

And define $F: R \to [0,1]$ for all $\alpha \in R$ by

$$F(\mu) = \begin{cases} 0.6 & \text{if } \mu \in \mathbb{Q}, \\ 0.8 & \text{if } \mu \in \mathbb{Q}(\sqrt{2}) - \mathbb{Q}, \\ 0.5 & \text{if } \mu \in \mathbb{R} - \mathbb{Q}(\sqrt{2}) \end{cases}$$

Then by Theorem 4.7, it follows that A is an $(\in, \in Vq)$ -fuzzy Lie algebra of R³ over an $(\in, \in Vq)$ -fuzzy field F of R.

But this is not an (\in, \in) fuzzy Lie algebra of \mathbb{R}^3 over an (\in, \in) -fuzzy field of \mathbb{R} . Let x = (1,0,0). Then A(1,0,0) = 0.8 > 0.65 > 0.62. So $x_{0.65} \in A$ and $x_{0.62} \in A$. But $(x - x)_{m(0.65,0.62)} = 0_{0.65} \in A$. It is clear that A(0) + 0.62 = 0.6 + 0.62 > 1 and so $0_{0.65} \in VqA$. Therefore A is not an (\in, \in) -fuzzy Lie algebra of \mathbb{R}^3 over an (\in, \in) -fuzzy field F of \mathbb{R} .

4.11 Theorem Let A be an $(\in, \in Vq)$ -fuzzy Lie algebra of L over an $(\in, \in Vq)$ -fuzzy field of F of X such that $M(A(x), F(\mu)) > 0.5$ for all $x \in L$ and for all $\mu \in X$. Then A is an (\in, \in) -fuzzy Lie algebra of L over an (\in, \in) -fuzzy field of X.

Proof.

Suppose that A is an $(\in, \in Vq)$ -fuzzy Lie algebra of L over an $(\in, \in Vq)$ -fuzzy filed F of X. Let $\mu, \varphi \in X$ and $t, s \in (0,1]$ be such that $\mu_t \in F, \varphi_s \in F$. Then, $F(\mu) - t, F(\varphi) - s$ and so $m(F(\mu), F(\varphi)) - m(t, s)$. It follows from Theorem 4.6 that $F(\mu - \varphi) - m(F(\mu), F(\varphi), 0.5)$. Given that $M(A(x), F(\mu)) < 0.5$ for all $\mu \in X$, for all $x \in L$, Then we have $m(F(\mu), F(\varphi)) < 0.5$. So $F(\mu - \varphi) - m(F(\mu), F(\varphi)) - m(t, s)$. Therefore, $(\mu - \varphi)_{m(t,s)} \in F$. Similarly, $, (\mu\varphi^{-1})_{m(t,s)} \in F$ for all $\mu, \varphi \neq 0$ in X. Therefore, F is an (\in, \in) - fuzzy field of X.

Let $x, y \in L$ and $t_1, t_2 \in (0,1]$ be such that $x_{t1} \in A, y_{t2} \in A$. Then $A(x) - t_1, A(y) - t_2$ and so $m(A(x), A(y) - m(t_1, t_2)$.from Theorem 4.7 A(x - y) - m(A(x), A(y), 0.5) and from the given condition we get m(A(x), A(y)) < 0.5. Therefore, $A(x - y) - m(t_1, t_2)$ and so $(x - y)_{m(t1,t2)} \in A$. Let $x \in L, \mu \in X, s, t \in (0,1]$ be such that $\mu_s \in F, x_t \in A$. Then $F(\mu) - s, A(x) - t$ and so $m(F(\mu), A(x) - m(s, t))$. by theorem 4.7,

 $A(\mu x) - m(A(x), F(\mu), 0.5) = m(A(x), F(\mu) - m(s, t).$

So, $(\mu x)_{m(s,t)} \in A$. Let $x_{t1} \in A$, $y_{t2} \in A \Rightarrow ([x, y])_{m(t1,t2)} \in A$. Therefore, A is an (\in, \in) -fuzzyLie algebra of L over an (\in, \in) -fuzzy field F of X.

4.12 Proposition If A is an $(\in, \in Vq)$ -fuzzy Lie algebra of L over an $(\in, \in Vq)$ -fuzzy field F then.

- (1) A(0) m(A(x), 0.5),
- (2) A(-x) m(A(x), 0.5),
- (3) A(x + y) m(A(x), A(y), 0.5).

Proof.

Let $x \in L$, $y \in L$, then, from Theorem 4.7, the following hold.

- (1) A(0) = A([x,x]) m(A(x), 0.5). so A(0) m(A(x), 0.5).
 - (2) A(-x) = A(0-x) m(A(0), A(x), 0.5) = m(m(A(x), 0.5, A(0))) = m(A(x), 0.5). Therefore A(x) m(A(x), 0.5).
 - (3) A(x + y) = A(x y m(A(x), A(-y), 0.5) m(A(x), m(A(y), 0.5), 0.5) = m(A(x), A(y), 0.5). Therefore, A(x + y) m(A(x), A(y), 0.5).

4.13 Theorem Let A be an $(\in, \in Vq)$ -fuzzy Lie algebra of L over an $(\in, \in Vq)$ -fuzzy field F of X. Then, $t \in (0,0.5]$, A_t is a Lie algebra over F_t when F_t contains at least two elements. **Proof.**

For $t \in (0,0.5]$, suppose F_t contains at least two elements.

Let $\mu, \varphi \in F_t$. Then $\mu_t \in F$, $\varphi_t \in F$ and so $F(\mu) - t$, $F(\varphi) - t$. This shows that $m(F(\mu), F(\varphi)) - t$ and so $m(F(\mu), F(\varphi), 0.5) - m(t, 0.5)$. Therefore,

 $(\mu - \varphi) - m(F(\mu), F(\varphi), 0.5) - m(t, 0.5) = t$

And hence $(\mu - \varphi)_t \in F$. Thus, $\mu - \varphi \in F_t$. Similarly, $\mu \varphi^{-1} \in F_t$ for all $\mu, \varphi \neq 0$ in F_t . Therefore F_t is subfield of X.

Suppose $x, y \in A$. Then A(x) - t, A(y) - t and m(A(x), A(y), 0.5) - m(t, 0.5) = t. So A(x + y) - m(A(x), A(y), 0.5) - t and hence $(x + y) \in A_t$. Let $\mu \in F_t$, $x \in F_t$. Then $F(\mu) - t, A(x) - t$ and $m(F(\mu), A(x)) - t$. Thus $m(F(\mu), A(x), 0.5) - t$. and so $A(x) - m(F(\mu), A(x), 0.5) - t$. Hence $\mu x \in A_t$

Similarly, for $x, y \in A_t$, $[x, y] \in A_t$. Therefore, A_t is a Lie subalgebra over the field F_t . Let $f: L \to L^t$ be a function. If A and B are fuzzy subsets of L and L^t , respectively, then f(A) and $f^{-1}(B)$ are defined using Zadeh's extension principle (7).

If α is one of the $\{\in, q, \in Vq\}$, it follows that $x_t \alpha f^{-1}(B)$ if and only if $(f(x))_t \alpha(B)$ for all $x \in L$ and for all $t \in (0,1]$.

4.14 Theorem Let L and L' be Lie algebras over a field X and let $f: L \to L^1$ be a homomorphism. If B is an $(\in, \in Vq)$ -fuzzy Lie algebra of L' over an $(\in, \in Vq)$ -fuzzy field of X, then $f^{-1}(B)$ is an $(\in, \in Vq)$ -fuzzy Lie algebra of L over the $(\in, \in Vq)$ -fuzzy field F of X.

Proof.

Let $x, y \in L$ and $t, s \in (0,1]$ be such that $x_t \in f^{-1}(B)$ and $y_s \in f^{-1}(B)$. Then $(f(x))_t \in B$, $(f(y))_s \in B$. Since B is an $(\in, \in Vq)$ -fuzzy lie algebra over L' over an $(\in, \in Vq)$ -fuzzy field of X,

$$\left(f(x-y)\right)_{m(t,s)} = \left(f(x) - f(y)\right)_{m(t,s)} \in VqB.$$

So we have

 $((x-y))_{m(t,s)} \in Vqf^{-1}(B)$. Similarly, $([x,y])_{m(t,s)} \in Vqf^{-1}(B)$.

Let $\mu \in X, x \in L$ and $r, t \in (0,1]$ be such that $\mu_r \in F$ and $x_t \in f^{-1}(B)$. Then $(f(x))_t \in B$ and so $(f(\mu x))_{m(r,t)} = (\mu f(x))_{m(r,t)} \in VqB$

and hence $(\mu x)_{m(r,t)} \in Vqf^{-1}(B)$.

Therefore, $f^{-1}(B)$ is an $(\in, \in Vq)$ -fuzzy Lie algebra of L over the $(\in, \in Vq)$ -fuzzy field F of X. **4.15 Definition**

A fuzzy set δ of a set Y is said to process Sup Property if for every nonempty subset S of Y, there exists $x_0 \in S$ such that

$$\delta(x)_0 = Sup(\delta(x)|x \in S)$$

4.16 Theorem Let L and L' be Lie algebras over a field X and let $f: L \to L^1$ be a onto homomorphism. Let A be an $(\in, \in Vq)$ -fuzzy Lie algebra of L' over an $(\in, \in Vq)$ -fuzzy field of X, which satisfies the sup property. Then f(A) is an $(\in, \in Vq)$ -fuzzy Lie algebra of L' over the $(\in, \in Vq)$ -fuzzy field F of X. **Proof.**

Let $a, b \in L'$ and $t, s \in (0,1]$ be such that $a_t \in f(A)$ and $b_s \in f(A)$. Then f(A)(a) - t and f(A)(b) - s and so

 $Sup\{(A(z)|z \in f^{-1}(a) - t \text{ and } Sup\{(A(w)|w \in f^{-1}(b) - s.$

Since f is onto, $f^{-1}(a)$ and $f^{-1}(b)$ are nonempty subsets of L and by the sup property of A, there exists $x \in f^{-1}(a)$ and $y \in f^{-1}(b)$ such that

$$A(x) = \sup\{(A(x)|x \in f^{-1}(a)\} \text{ and } A(y) = \sup\{(A(w)|w \in f^{-1}(b)\}\}$$

Then $x_t \in A$ and $y_s \in A$. Since A is an $(\in, \in Vq)$ -fuzzy Lie algebra of L over the $(\in, \in Vq)$ -fuzzy field F of X, we have $([x, y])_{m(t,s)} \in VqA$ and so A([x, y]) - m(t, s) or A([x, y]) + m(t, s) > 1. Now f(x) = a, f(y) = b and so $[x, y] \in f^{-1}([a, b])$.

$$f(A)([a,b]) = \sup(A(z)|z \in f^{-1}([a,b])) \ge A([x,y])$$

And so $f(A)([a,b]) \ge m(t,s)$ or f(A)([a,b]) + m(t,s) > 1. Thus $([a,b])_{m(t,s)} \in Vqf(A)$. Also $(x-y)_{m(t,s)} \in VqA$ shows that $(a-b)_{m(t,s)} \in Vqf(A)$.

Let $\mu \in X, b \in L'$ and $r, s \in (0,1]$ be such that $\mu_r \in F$ and $b_s \in f(A)$. Then it follows that $\mu_r \in F$ and $y_s \in A$. So $(\mu y)_{m(r,s)} \in VqA$. Thus $A(\mu y) \ge m(r,s)$ or $A(\mu y) + m(r,s) > 1$.

But $f(A)(\mu b) = Sup\{A(w)|w \in f^{-1}(\mu b)\} \ge A(\mu y)$. This shows that $(\mu b)_{m(r,s)} \in Vqf(A)$. Therefore, f(A) is an $(\in, \in Vq)$ -fuzzy Lie algebra of L'over the $(\in, \in Vq)$ -fuzzy field F of X.

CONCLUSION

In this paper, WE conclude and investigateD the concept of (μ, ϕ) – fuzzy lie algebras over an (μ, ϕ) – fuzzy field and the relations belong to and quasi-coincidence with characterizations of a $(\in, \in V_q)$ – fuzzy lie algebras over a $(\in, \in V_q)$ – fuzzy field. This concept can further be generalized to interval valued fuzzy field for new results in our future work.

REFERENCES

[1] P.L.Antony and P.L.Lilly, (α, α) -fuzzy algebra over an (α, α) -fuzzy field, Journal of generalized Lie Theory and Appl., Vol.4(2010), Article ID S090701.

[2] M. Akram. Generalized fuzzy Lie subalgebra . J.Gen. Lie Theory Appl., 2(2008),261-268.
[3] M. Akram and W.A. Dudek . Genaralized fuzzy subquasi groups . Quasigroups Related Systems,16(2008),133-146.

[4] P. L. Antony and P. L. Lilly. Some properties of fuzzy Lie algebra over fuzzy field. Accepted for publication in proceedings of the International seminar on Topology and Applications ,19-21 March 2009, CRMS, St. Joseph's College, Irinjalakuda, India.

[5] S. K. Bhakat and P.Das. Fuzzy subrings and ideals redefined. Fuzzy Sets and Systems ,81(1996),383-393.

[6] L. Guangwen and G. Enrui. Fuzzy algebras and fuzzy quotient algebras over fuzzy fields . Electronic Busefal, 85(2001), `1-4.

[7] G. J. Klir and B. Yuan . Fuzzy Sets and Fuzzy Logic: Theory and Applications . Prentice Hall PTR, New Jersey, 2006.

[8] J. E.Humphreys. Introduction to Lie Algebra and Representation Theory .Springer - Verlag, New York, 1972.

[9] D. S. Malik and J. N. Mordeson . Fuzzyvector spaces. Inform. Sci., 55(1991), 271-281.

[10] S. Nanda. Fuzzy algebras over fuzzy fields.Fuzzy Sets and Systems, 37(1990), 99-103.

[11] B. M. Pu and Y. M. Liu Fuzzy topology .I.Neighborhood structure of a fuzzy point and moore-Smith convergence. J. Math. Anal. Appl., 76(1980), 571-599.

[12] S.E. Yehia. Fuzzy ideals and fuzzy subalgebras of lie algebras. Fuzzy Sets and Systems, 80(1996),237-244.

[13] L.A. Zadeh. Fuzzy sets.Information and Control,8(1965),338-353.

