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ABSTRACT 
In data mining applications, mining frequent subgraph from a large  number of small graphs is an important 

operation. For extracting frequent subgraphs many algorithms have been proposed. But now a days, graph data 

grows both in size and quantity, therefore existing methods cannot extract frequent subgraph on a centralized 

machine. To overcome this some distributed solution using MapReduce is becoming important paradigm for 

computation on massive data. In experimented work, we investigate how to efficiently perform extraction of frequent 

subgraph over a large datasets using MapReduce. We propose a frequent subgraph algorithm called as gSpan-H 

which is iterative MapReduce based framework. This algorithm uses breadth first search strategy. This algorithm is 

isomorphism testing free approach for efficiently mine frequent subgraph. Our experiments with real life and large 

synthetic datasets validate the effectiveness of gSpan-H for mining frequent subgraphs from large distributed 

datasets. 
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1. INTRODUCTION 

AS of late, graph mining has turn out to be very popular research area and has surround a large number of 

investigation and application domains like data mining, computational biology, e-commerce, web mining, 

environmental sciences and social network analysis. FSM is  a very significant research area in graph mining [9, 10] 

for extracting novel insights, because of its extensive range of applications in the  above domains. Frequent patterns 

help to identify different relations. For example, in a protein-protein interaction (PPI) network, a frequent pattern 

could uncover unknown collaboration of a protein [11]. Also, within social networks, a frequent pattern could show 

a friend group. For frequent subgraph mining many methods are discovered, however these traditional methods for 

data investigation and mining are not designed to handle massive dataset. So, in recent years these methods are re-

considered and re-implemented to handle big dataset. To analyze the massive dataset, the MapReduce [4] approach 

of distributed computing has been the most successful. MapReduce approach does  distributed computing and it uses 

a Distributed File System for storing the data. Due to this it improves the input output performance while computing 

massive dataset. Utilizing MapReduce framework considerable investigation is done on graph data, but mining 

frequent subgraphs from graph database has gotten the slightest consideration. Because the development of frequent 

subgraph mining (FSM) in various domains  like cheminformatics [12], social networks, bioinformatics [11], and 

semantic web [13], a versatile technique for FSM using MapReduce is  of high demand. In this experimentation 

gSpan-H i.e. graph based sub-structure pattern mining using Hadoop is proposed, a distributed FSM technique using 

MapReduce is stated. gSpan-H is a isomorphism testing free approach and it uses breadth-first-approach. gSpan-H 

discovers frequent subgraph without candidate generation instead that algorithm builds new lexicographic order 

among graphs, then it maps each graph to unique DFS code as its canonical label. gSpan-H computes frequent 

subgraph based on this lexicographic order. gSpan-H generates a complete set of frequent subgraphs, by giving a 

graph database, and a minsup (minimum support) threshold. In a partition, all the patterns which are having  non-

zero support constructs and keeps, to guarantee completeness of gSpan -H technique within the map phase of the 

mining. Then in the reduce phase, it combines its support which is calculated from all partitions from different 

computing nodes and from this support it selects  whether a pattern is frequent. FSMH method runs in an iterative 

manner [1] i.e. output of i-1 reducer’s iteration is given as an input to the input of mapper of iteration i. In mapper of 

iteration i phase computes candidate subgraph of size i. Here size of graph is considering as the  number of edges it 

having. Aggregating the local supports of all reducers of iteration i, it finds true frequent subgraphs. The data 

processed in subsequent iteration is also writes on HDFS. 
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2. LITERATURE SURVEY  

 
2.1 In- memory version of frequent subgraph mining method 

Traditional methods solves only in-memory version of FSM task and for this many methods are developed. Most 

important amongst them are AGM [13], FSG [3], gSpan [4], Gaston [5], and DMTL [6]. All these techniques are 

able to process just small amount of data. And mines  this data in reasonable amount of time and assume that mining 

task fit in main memory of a computer. These methods fail if data grows  substantially. Some methods such as, DB-

Subdue [7], and DB-FSG [8] and OOFSG [9] consider large database scenario. 

 
2.2 Frequent subgraph mining designed using Shared memory parallel algorithms 

Researchers investigate and consider shared memory to deal with scalability problem of graph datasets. Cook et al. 

proposed frequent subgraph mining algorithms parallel version Subdue [14]. A parallel toolkit [15] for their Motif-

Miner [16] algorithm is developed by Wang et al. The Parmol [17] Software created by Meinl et al includes parallel 

implementation of Mofa [18], gSpan [4], FFSG [19] and Gaston [5]. ParSeMis[20] tool also provides parallel 

implementation of gSpan algorithm. There are couples of important works, Part- Miner [21] and PartGraphMining 

[22], to deal with scalability problem due to the size of input graph. In this methods graph data is partitioning for the  

processed. 

 

2.2 Frequent subgraph mining using MapReduce framework 

To overcome scalability problem of input graph data MapReduce framework is used for mining frequent subgraph. 

For the mining frequent subgraph from substantial gathering of graph datasets Gabriel Ghinita [23] proposed 

MapReduce based two-step method i.e. filter and refinement method which is appropriate to very big parallelization 

inside the scalable MapReduce processing model. Set of graphs partition  among worker nodes. Filter step applies on 

each worker. Then it determines a set of candidate subgraphs that  are locally frequent in its  partition. The input of 

the refinement step is the union of all such. Against all partitions, every candidate is checked and only the globally  

frequent graphs are saved. This method can improve efficiency, diminishes communicat ion cost with low 

computational overhead. From the large network Suri and Vassilvitskii [24] and Pagh and Tsourakakis [25] finds the 

substructures using MapReduce. The proposed algorithm is sequential triangle counting algorithm. This method 

applies black box method like any triangle counting algorithm and share out the  computation across various 

machines. Count the triangles using MapReduce from graph dataset are the main aim of this work. In [26], the  

authors uses MapReduce framework for frequent subgraph mining; but, their method is unproductive as a result of 

various shortcomings. In this mechanism it cannot avoid generating duplicate patterns. Due to this size of candidate 

subgraph space increases exponentially. Also this  method contains duplicate copy of graph patterns. Another 

problem with this method is that, number of iterations required must be specified  by user. Method cannot specify 

how to determine total number of iterations count accordingly that the algorithm is capable to get all frequent  

patterns for a given support. There exist some works proposed by Lin [27] and Cheng [28] that mine subgraphs from 

a single large graph and it also consider frequent considering their induced occurrences. However, there objective is 

different than FSM-H and gSpan-H. The method proposed in [1] for frequent subgraph over a distributed graph data 

is FSM-H. FSM-H i.e. Frequent Subgraph Mining using Hadoop, a distributed FSM technique using MapReduce is 

stated. FSM-H generates a complete set of frequent subgraphs, by giving a graph database, and a minsup (minimum 

support) threshold. In FSM-H method mapper generates candidate subgraph and then perform isomorphism 

checking. If candidate subgraph passes this test then on reducer it checks its support and if support great er than 

minsup then pattern is frequent; otherwise it is infrequent. But this algorithm suffers from two additional costs: 

 

1. Costly Subgraph isomorphism test: Since subgraph isomorphism is an NP-complete problem, no      

polynomial algorithm can solve it. Thus testing of false candidate degrades the performance a lot. 

2. Costly candidate generation: The generation of size (k+1) subgraph candidates from size k frequent 

subgraphs is more complicated and costly. 

 

 

 

The above discussed method had a common problem where all these methods cannot mine the complete frequent 

patterns from large graph datasets. 
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3 BACKGROUND 

 
3.1. Frequent subgraph mining 

 Let, G = {G1, G2… Gn} be a graph database. Every Gi є G, i= {1...n} stands for directed, labeled, 

connected and simple (i.e. only one edge between pair of vertices) graph. Size of graph g is defined as the total 

number of edges it contains. Support of graph G is defined as number of times the subgraph g appears in the graph 

database G. Then the subgraph g said to be frequent if support ≥ ∏min, where ∏min   is user-specified or predefined 

minimum support (minsup) threshold. FSM i.e. frequent subgraph mining is define as, the method of discovering all 

subgraph that appear frequently in a database with respect to  a given database according and given frequency 

threshold. F represents the set of frequent patterns and it partitions into a number of disjoint  sets according to the 

size of frequent patterns.Fi represents frequent patterns of size i.  

Example Consider a graph database as shown in fig 1a.with tree vertex labeled graphs (G1, G2 and G3). If ∏min = 2, 

then there are 13 frequent subgraphs are possible as shown in Fig. 1b. 

 

 
 

Figure 1 (a) Graph database G having three graphs with labeled vertices (b) 13 Frequent subgraphs of fig (a) 

having minsup = 2. 

 

 

3.2. MapReduce 

Google proposed native framework called MapReduce for distributive data analysis. It is a programming model. 

Due to this model it is  enables distributed computations on big datasets [29]. It is an execution framework for large-

scale data processing. The MapReduce model provides two functions: map, and reduce. According to its job, a 

worker node in MapReduce is called a mapper or a reducer. 

 Map Function: For the map function input is given as a collection of (key, value) pairs. On each pairs 

apply map function. It generates an arbitrary number of (key, value) pairs as a intermediate results. 

 Reduce Function: The reducer worker node collects the values having same key in a sorted manner, then 

applies the reduce function on that list. Output is written by reducer in output file. A distributed file system 

managed all the input and output files of MapReduce. Fig.2 shows the model of MapReduce framework. 

Hadoop is an open source implementation of MapReduce programming model written in Java  language. 
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Figure 2 MapReduce Framework 

3.3. Iterative MapReduce 

Multi staged implementation of map and reduce function pair in a cyclic manner is called as Iterative MapReduce 

[1], i.e. output of the previous iteration serves as input to the next iteration. Input  for the stage i +1 mappers is the 

output of the stage i reducer in the iterative MapReduce. Termination of the job decides by an external condition. 

 

4 SYSTEM ARCHITECTURE 
4.1. Framework of gSpan-H 

Figure 3 shows flow diagram of phases of gSpan-H algorithm. gSpan-H has following three important phases: 

1) Data partition 

In this phase gSpan-H generates the partition of input dataset and also omits the infrequent edges from 

input graph dataset. gSpan-H uses one straightforward method for partition in which each partition 
processes equal number of graphs. 

2) Preparation Phase 

In this phase mapper generates some partition specific data structures. Each partition generates distinct 

copy of data structure. They are static for a partition in the sense that they are same for all patterns 

generated from a partition. Preparation phase finds all possible frequent subgraph of size one and 

writes on HDFS. 
3) Mining Phase 

In this phase, mining process finds all possible frequent subgraphs through iteration. Each of the 

mappers of the ongoing iteration reads the chunk written in HDFS and perform mining task. 
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4.2. Algorithm For gSpan-H 

In this section describes process of subgraph construction and finding frequent subgraph from them using two 

heterogeneous MapReduce jobs  per iteration. Below algorithm 1 and 2 shows the pseudo code of mapper and 

reducer respectively. The first job (denoted as Ak) constructs  size-k subgraphs from size-(k - 1) subgraphs, while the 

second job (denoted as Bk) will check whether or not a subgraph meets the user defined support. The algorithm 

starts with single edges, and runs until there are no longer any frequent subgraphs constructed. Algorithms  1 and 2 

highlight the tasks of Ak Mapper and Reducer respectively and Algorithms 3 and 4 highlight the tasks of Bk Mapper 

and Reducer respectively. 

 

Algorithm 1 Algorithm for Mapper Ak of distributed gSpan algorithm 
Input: The input key is a graph ID, and the input value is FP

k
 represents frequent size i subgraph. The 

mapper reads it from Hadoop Distributed File Systems(HDFS) 
Output: key-value pair, such as (c.min-dfs-code, c.obj) 
1: Sort labels of the vertices and edges in Fp

k
 by their frequency. 

2: Remove infrequent vertices and edges. 
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3: Relabel the remaining vertices and edges in descending frequency. 
4: S1   all frequent 1 edge graphs in Fpk 
5: sort S1 in DFS lexicographic order 

 
 

Algorithm 2 Algorithm for Reduce Ak of distributed gSpan algorithm 
Input: Fp

k
 represents the set of size-k frequent subgraphs having non-zero support in a specific partition   

           p. 
Output: key-value pair, such as (c.min-dfs-code, c.obj) 
1: emit data for mapper of second MapReduce job in same iteration 
 

 
 Algorithm 3 Algorithm for Mapper Bk of distributed gSpan algorithm 
  Input: Fp

k
 represents the set of size-k frequent subgraphs having non-zero support in a specific partition   

             p. 
Output: key-value pair, such as (c.min-dfs-code, c.obj) 

1: for all edge e є S
1
 do  

2:  For each 1-edge frequent subgraph Mining grows all nodes in the subtree rooted at this 1-   
    edge graph. 
3: end for 
4: Shrink each graph in the graph set Fp

k
 by removing the edge after all descendants of this 1-edge graph  

    have been searched. 

 

Algorithm 4 Algorithm for Reducer B k of distributed gSpan algorithm 
Input: Fp

k
 represents the set of size-k frequent subgraphs having non-zero support in a specific partition  

           p. 
Output: key-value pair, such as (c.min-dfs-code, c.obj) 
1: if support ≥ minsup then 
2:  emit subgraph as frequent 
3: end if 

 

5 RESULTS AND DISCUSSION 
In this section, we demonstrate the performance of gSpan-H for solving frequent subgraph mining task on graph 

datasets by giving experimental results. For input, we use DBLP dataset. In this experimentation, we compare 

execution runtime for gSpan-H with FSM-H [1] algorithm considering three parameters support, different dataset 

sizes and number of Reducer. 

 
5.1. Runtime of gSpan-H for Different Minimum Support 

In this experiment, we analyze the runtime of FSM-H and gSpan-H for varying minimum support threshold. We 

conduct this experiment for the real world dataset DBLP. Here use 2K input file and x the number of mapper and 

reducer to 4 and keep track of the running time of FSM-H and gSpan-H for minimum support thresholds that vary 

between 10 to 40 percent. In Figs. 4 show the result. As expected, the runtime decreases as minimum support 

threshold increases. 
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Figure 3 Line plot showing the relationship between the minsup threshold (percent) and the running time (in 

Sec) 

5.2. Runtime of gSpan-H for Different sizes of graph dataset 

Fig 7.3 shows relationship between runtime for different sizes of datasets. In this experiment we use four synthetic 

datasets each having 1K to 4K input graphs. Fig 7.3 shows the runtime of FSM-H and gSpan-H for these datasets for 

20 percent minimum support threshold. As we can see, the overall running time increases at a sub-linear rate as the 

number of graphs in the database increases. This shows the scalability of FSM-H and gSpan-H. 

 

 
 

Figure 4 Line Plot showing the relationship between the different sizes(in K) and running time(in sec) 

5.3. Runtime of gSpan-H for Varying Number of Reducer 

In this experiment, measure the runtime of algorithms for various configurations such as, 1, 2, 3 and 4 reducers. For 

experiment use, we use DBLP dataset with 20 percent minimum support threshold. Figs. 7.2 show the relationship 

between execution time and the number of reducers using line plot. 
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Figure 5 Line plot showing the relationship between the number of Reducer and the running time (in Sec) 
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