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ABSTRACT 
Turbo-machine applications have a several alternatives, each of which emanates to help build the world of power. 

One of these ideas is ‘The Tesla turbine’, which is also referred to as a bladeless turbine or friction turbine. A 

turbine is a machine that transforms rotational energy from a fluid that is picked up by a rotor system into usable 

work or energy. The principle of Tesla turbine comes from two main rudiments of physics: Adhesion and Viscosity, 

instead of the conventional energy transfer mechanism in traditional turbines. It is referred to as a bladeless turbine 

because it uses the boundary layer effect and not a fluid impinging upon the blades as in a conventional turbine. In 

this Analysis by the means of changing mass flow rate and proper design of bladeless rotor the efficiency is to be 

calculated and the analysis of viscous fluid that can be transferred is to be measured. The Turbo machine will also 

be analyzed as a turbine for a viscous fluid transfer and will be compared with the previous cfd analysis.  
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1 INTRODUCTION 

Ludwig Prandtl the German Engineer on August 12, 1904 first introduced the boundary layer concept. The fluid 

flow equation was simplified by dividing the flow field into two areas: Dominated by viscosity, one inside the 

boundary layer and hence the majority of drag is created which will be experienced by the boundary layer. Another 

will be outside from this boundary layer, neglecting the viscosity effects on the solution. By this there will be 

significant simplification of the Navier-Stokes equation for closed form solution for the flows in both the areas. 

Within the boundary layer heat transfer from a body and to a body also takes place which will again simplified the 

flow field equation outside the boundary layer. Normal to the surface direction pressure distribution throughout the 

boundary layer remains constant and is the same in as the surface itself. 

 

Figure 1.1 Boundary Layer concept 
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The thickness of the velocity boundary layer is normally defined as the distance from the solid body at which the 

viscous flow velocity is 99% of the free stream velocity (the surface velocity of an inviscid flow). Displacement 

Thickness is an alternative definition stating that the boundary layer represents a deficit in mass flow compared to 

inviscid flow with slip at the wall. It is the distance by which the wall would have to be displaced in the inviscid 

case to give the same total mass flow as the viscous case. The no-slip condition requires the flow velocity at the 

surface of a solid object be zero and the fluid temperature be equal to the temperature of the surface. The flow  

1.1 TESLA TURBINE 

The first bladeless turbine was designed and manufactured by a Serbian engineer and well known inventor Nicola 

Tesla in 1913, by turbine also known as a friction turbine. The boundary layer flow which produces the viscous 

effect is used to run this unusual turbo device. In our general classical bladed turbines, the viscous effects are the 

reason for the efficiency loss of this typical turbines therefore it is the undesirable source while opposite of this 

phenomena these viscous effects are the main driver enabling the rotational movement of the rotor. A set of n 

number of thin disks is attached with a shaft which is perpendicular to its axis of a revolution; “n” numbers of set 

depends on the size and design. According to the theory the individual each disk must be as thin as possible. The 

smaller the gap between the “n” number of disks and the distance between one another the higher will be rotation. 

The highest value of efficiency according to Rice [18] is achievable when the gap is approximately equal to the 

double boundary layer thickness. Therefore, with respect to the flow conditions and physical properties of the 

working fluid the gaps between the disks should be maintain. The technology of manufacture, material strength and 

its assembly has the impact on the thickness of the disks and the gap between them is also limited. 

 

Figure 1.2Parts of the Tesla Turbine
 

2 CONSTRUCTION AND WORKING PRINCIPLE 

The closely spaced disks, in Tesla Turbine are propelling by using the viscosity and adhesion of a moving medium. 

From the periphery the fluid enters the inner space between the disks and through the central holes located near the 

axles exists shown in the figure 2.1. To couple inertia forces there are no constraints or obstacles as in traditional 

turbines. The fluid entering tangentially at perpendicular to the axis of rotor at the periphery, it transfers momentum 

to the disks, during this process. If considering ideal conditions, then between the tangential velocity of the fluid 

entering the disk and the tip velocity of the rotating disk and the tip velocity of the rotating disk there will be no 

slippage at the nozzle exit. The efficiency of energy transfer is largely is governed by the following: 
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 From the nozzle the smoothness of the medium flow to the disks. 

 The bearing effectiveness for reducing the friction los and 

 For the transfer of the momentum the size of the active area. 

 

Figure 2.1Construction of Tesla Turbine [13] 

From a manufacturing standpoint a most attractive feature of the Tesla turbine is its simplicity. The parts from the 

Tesla Turbine can be taken apart easily as assembly is very simple, as shown in figure. 2.2. The Tesla turbine 

designed by its use of flat, fixed and co-rotating disks equally spaced along the rotor shaft which can be seen in 

figure. 2.2. There is a metal casing by which the rotor is housed which contains the exhaust ports as well as inlet 

nozzle. 

 

Figure 2.2Entire Tesla turbine assembly showing the rotor blades, housing, inlet nozzle and exhaust Ruler 

(cm) added for approximate size scale
 

The fluid velocity is significantly increased when a fluid is introduced through the nozzle and towards the outer edge 

of the disks it is ejected tangentially. The result in momentum exchange from the fluid to the disks is by the 

viscosity of the high speed fluid and no slip condition along disk surface power output and shaft torque. 
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Figure 2.3Schematic of fluid flow through the Tesla turbine All major turbine components are shown and the 

actual rotor-housing clearance given [15] 

As can be seen in  Figure 2.3, there is nothing complicated about the way a Tesla turbine works. The fact that the 

fluid flows parallel to the turbine disks gives this design a distinct advantage over traditional bladed turbine; 

abrasive particulates or even water droplets can be present in the working fluid without risking direct impacts which 

could cause additional wear and damage to the disks. Its ability to utilize a variety of fluids without damaging the 

blades and its extremely low manufacturing cost warrant a renewed interest in the design. 

 

3 EXPERIMENTAL SETUP 

This contains details of the experimental setup, scheme of instrumentations and experimental procedures. The 

description and specification of various instruments and components are described in this chapter. The specification 

equipment’s used in the experimental setup are given in the later section. 

 

Figure 3.1 Schematic Diagram of Tesla Turbine Setup 
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PROCEDURE 

1. The water is collected into the tank. 

2. The pump will then take water from the tank for supplying to the turbine it will pass through the valve 

which is manually operated. 

3. Closing and opening of the valve will give us the different readings. 

4. From the orifice using u-tube manometer the velocity and mass flow rate will be measured. 

5. Then water will pass through the turbine will it will give the rotation to the disc and using the stroboscope 

the RPM will be measured. 

6. Finally the dynamometer is attached to this which will produce the current in volt which will be measured 

by the voltmeter. 

3.1 Experimental setup and Equipment’s that is used 

 

Figure 3.2 Experimental Setup 

1. Pump And Motor 

 

Figure 3.3 Pump and motor for operating Machine 

Power Range(HP) 0.25 HP(Single Phase Self Priming) 

Speed 2850 rpm,50 Hz  
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Versions 230 V,50 Hz(Single Phase) 

Types Of Duty S1(Continuous) 

Class of Insulation F/B 

Maximum Liquid Temperature 35 
0
C 

 

2. U-TUBE MANOMETER 

 

Figure 3.4 U tube Manometer for pressure difference 

Body  Solid clear crystalc body 

Subdivision 1 M.M W.C 

Connection House nozzle of PP 

Scale Black Anodized Aluminium Scale 

Metering Tube Finished glass coat 

Range 250-0-250 

 

3. DYNAMOMETER 
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Figure 3.5 Dynamometer for generating electricity 

Item Weight 159 g 

Product Weight 14.9*10.1*8.5 cm 

Item model number NTL-12VDCM 

Weight 160 Grams 

Colour Silver 

 

4.  ORIFICE  

 

Figure 3.6 Orifice 

Diameter at inlet of orifice=0.028 m 

Diameter at outlet of orifice plate=0.014 m 

Area at inlet of orifice =6.157×10
-4

 m
2
 

Area at outlet of orifice=1.539×10
-4

 m
2
 

 

5. MULTIMETER 

 

Figure 3.7Multimeter for measuring volt and current 
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Brand Name Digital Multimeter Box 

EAN 0740812318220 

Item Weight 150 grams 

 LED  (2 red , 2 green, 2 yellow) 

Resistors  1k,47k 

 

6. STROBOSCOPE 

 

Figure 3.8Stroboscope for measuring RPM 

Brand Name DT-315A Stroboscope 

Design durable properties and battery-powered motor 

Features  internal power supply and portable structure 

Battery rechargeable internal batteries or AC line-power switched  

 

3.2 Experimental Reading Calculation 
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Table 3.1 Result Table 

SR. 

NO 

Pressure 

difference 

(cm) 

Rise Of 

water level 
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R t(sec) 
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Mass 
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Power 

(Watt) 

(%) 

 

(%) 

CFD 

1 17.5 12 20 4106   0.6 16.14 59 70 

2 16.4 11.2 20 4106.5   
0.56 15.18 60 66 

3 14 10.8 20 4104.5   
0.54 14 55 62 

4 12 10 20 4105   
0.5 12.5 53 58 

5 10 8.5 20 4102.4   0.42 11 55 54 

6 8.3 7.9 20 4109.3   0.39 9 47.37 50 

7 6.5 6.8 20 4104.3   
0.34 7 43.75 46 

 

4 RESULT AND DISCUSSION 

After the experimental reading and the CFD analysis the comparison between the results of both the approach is 

carried out. So the evaluation can be done. The fig-4.1 and the fig-4.2 are showing the results for the Torque and 

Power output with respect to the Mass flow rate 
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Figure 4.1 Power output respected to Mass Flow rate 

 

Figure 4.2 Efficiency with respected Inlet velocity 

It was found out that the due to the pressure loss in the pipe of the experiment setup and the various others factor 

effecting the flow of the fluid is reason of loss of torque and the power output yet it is sufficient for providing the 

work to the generator. Though there are some improvement yet can be done for improving the output. 

5 CONCLUSIONS  

It is worth mentioning that the Tesla turbo machinery as a turbine especially fits into those instances where 

compacted unities are required for generating electrical power are required as in the case of isolated areas. It should 

be noticed that, as a unique source of rotating motion of this type, Tesla machines can run under a very wide 

spectrum of not only fuels but also fluids in general.  

Tesla-type turbo machinery probably cannot prove competitive in an application in which more conventional 

machines have adequate efficiency and performance. Thus, it cannot be expected to displace conventional water 
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turbines or gas turbines. Tesla-type turbo machinery can be considered as source of standard in applications in 

which conventional machines are inadequate. This includes applications for small shaft power, or the use of very 

viscous fluid or non-Newtonian fluids. It is an advantage that multiple-disk turbo machines can operate with 

abrasive two-phase flow mixtures with less erosion of material from the rotor.  

In general, it has been found that the efficiency of the rotor can be very high, at least equal to that achieved by 

conventional rotors. With the increase in the velocity of the fluid and the decrease in pressure shows the increase in 

the efficiency of the turbine. Mass flow rate plays the important part in it. The CFD and Experimental readings 

shows the minor difference providing the losses in the turbine. 
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