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ABSTRACT 
 In a cognitive radio network, a primary user (PU) shares its spectrum with secondary users (SUs) 

temporally and spatially, while allowing for some interference. Consider the problem of estimating the no-talk 

region of the PU, i.e., the region outside which SUs may utilize the PU’s spectrum regardless of whether the PU is 

transmitting or not. And propose a adaptive boundary estimation algorithm that allows SUs to estimate the 

boundary of the no-talk region collaboratively through message passing between SUs, and analyze the trade-offs 

between estimation error, communication cost, setup complexity, throughput and robustness. This power spectrum 

value is compared with five methods namely Periodogram spectral estimate, Bartlett's spectral estimate, Welch 

spectral estimate, Blackman Tukey spectral estimate and Correlogram Spectral estimate. And simulation  done 

using MATLAB. 
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1. INTRODUCTION 

Cognitive radio (CR) is a form of wireless communication in which a transceiver can intelligently detect 

which communication channels are in use and which are not, and instantly move into vacant channels while 

avoiding occupied ones. This optimizes the use of available radio frequency (RF) spectrum while minimizing 

interference to other users. In its most basic form, CR is a hybrid technology involving software defined radio 

(SDR) as applied to spread spectrum communications. Possible functions of cognitive radio include the ability  of a 

transceiver to determine its geographic location, identify and authorize its user, encrypt or decrypt signals, sense 

neighboring wireless devices in operation, and adjust output power and modulation characteristics. The idea for CR 

was developed by Joseph Mitola at the Defense Advanced Research project agency (DARPA) in the United States. 

Full cognitive radio is sometimes known as “Mitola radio.”Spectral density estimate (SDE) is 

to estimate the spectral density (also known as the power spectral density) of a random signal from a sequence of 

time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the 

signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at 

the frequencies corresponding to these periodicities. 

 

 

 

1.1 ESTIMATION OF NO-TALK REGION 

In this paper, we consider the cooperative estimation of the PU‟s no-talk region by exploiting local 

communications 

Amongst  SUs. Our main contributions are the following:  
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1) We propose a distributed boundary estimation method based on the distributed learning framework of [19], and 

with additional smoothness constraints. Sensors outside the estimated no-talk region are allowed to transmit even 

if the PU is transmitting. 

2) We provide approximate theoretical bounds for the communication cost incurred by our proposed method and the 

expected estimation error, so that the approximate optimal SU density can be inferred. This is useful for randomly 

allocating SUs to estimate the no-talk regions of multiple PUs transmitting over different frequency bands. We note 

that our theoretical performance analysis is not considered in [19], and to the best of our knowledge, is new. 

3) We derive order bounds for the setup complexity of our proposed method, and expressions for the throughput 

achievable by the PU and SUs. 

4) Simulations suggest that our proposed boundary estimation algorithm have better trade-offs in the throughput and 

setup communication cost than various other boundary estimation algorithms in the literature, and is more robust to 

SU sensing errors except when compared to the centralized least squares SVM (LS-SVM) method, which however 

incurs a much higher communication cost. 

 

1.2 CRN FUNCTIONS 

i. Spectrum Sensing 

 Detecting unused spectrum and sharing the spectrum without harmful interference to other users. 

ii. Spectrum Management 

 Capturing the best available spectrum to meet user communication on requirements. 

iii. Spectrum Mobility  

 Maintaining seamless communication requirement during transition to better spectrum. 

iv. Spectrum Sharing   

 Providing the fair spectrum scheduling method among coexisting CR users. 

 

2. SYSTEM MODEL 

Suppose that there is one PU and N SUs in a bounded region A ⊂ Rd.1 We say that the PU is active if it is  

transmitting in its licensed spectrum. Suppose that the PU is located at x0. We assume that all wireless channels are 

symmetric, and define the no-talk region [4] of the PU to be the set R = {x ∈ Rd : P0 − L(x, x0) > θ0}, where P0 is 

the transmit power of the PU, L(x, x0) is the average propagation loss function between the PU and a SU located at 

x, and θ0 is a fixed threshold. The average propagation loss can be modeled as L(x, x0) = l(_x − x0_) + S(x, x0) + 

F(x, x0),2 where l(_x − x0_) is the power attenuation due to the distance _x − x0_ between a SU at location x and 

the PU at location x0, S(x, x0) represents the average shadowing effect, and F(x, x0) is the average power loss due to 

multipath fading. We suppose that the PU can tolerate an average interference below the fixed threshold θ0 so that 

SUs outside of R can utilize the PU spectrum regardless of whether it is active or not. SUs within the no-talk region 

R are required to refrain from using the PU spectrum if the PU is transmitting. Note that the threshold θ0 is chosen 

to include a safety margin or budget for the propagation loss due to shadowing and fading, and other parameters like 

the average density of SUs. The reader is referred to [4] for a detailed discussion of the different considerations 

involved in defining the no-talk region of a PU. 

 
Fig -1 Spatial spectrum sharing between PU and multiple SUs. SU 1 and 2can use the licensed spectrum of the PU 

without spectrum sensing. SU 3 canonly utilize the spectrum when the PU is inactive. 
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In this paper, we aim to estimate the no-talk region R, or equivalently the boundary of R, in order to facilitate spatial 

spectrum sharing between the PU and SUs. The average propagation loss L(x, x0) for a SU at position x depends on 

various factors including the terrain, the type and number of reflectors and attenuators between the PU and SU, and 

other ambient environmental factors. The propagation loss function is thus difficult to determine to good accuracy in 

practice, and therefore we assume that L(x, x0) is unknown, and adopt a learning approach to estimate the region R 

solely based on the received power at the SUs. We make the following 

assumptions. 

Assumption 1: 

(a) Communications by SUs are over relatively shorter distances than the PU, and hence the transmit power of 

each SU is at most P0. Multiple SUs can share the PU‟s spectrum spatially  

(b) The region R is compact, and has a smooth4 boundary. 

(c) Time can be discretized into intervals and the PU is active in each interval with known probability π ∈ [0, 1], 

independently across intervals. 

 

2.1 BOUNDARY ESTIMATION 

In this section, we propose a distributed boundary estimation algorithm that determines the boundary of the 

set R based on message passing between SUs. The SUs are grouped into clusters, and most communications are over 

relatively short ranges within clusters. Each cluster has a SU that serves as the cluster head. The cluster head 

communicates with SUs inside its cluster, performs most of the necessary computations required for distributed 

estimation of the boundary, and communicates with other cluster heads. Cluster heads thus expend more energy than 

typical SUs inside the cluster. Incentives can be designed to compensate cluster heads; an example being given 

higher priority to access the spectrum. Such incentive mechanisms are out of the scope of our current work, and will 

not be discussed here. Our distributed boundary estimation procedure consists of the following steps. 

(i) Formation of clusters. Each SU independently nominates itself to be a cluster head with probability ph. A cluster 

head broadcasts a message over a control channel to all SUs within a distance δ to inform them of their inclusion 

into the cluster. To avoid collisions amongst cluster heads, a carrier sense multiple access protocol is used. Note 

thata cluster head can also belong to another cluster, and a SU can belong to multiple clusters. 

(ii) Boundary cluster identification. We design a metric to identify those clusters that lie close to the boundary of 

the set R. We call these the boundary clusters. 

(iii) Distributed boundary estimation. Messages are exchanged between members of a boundary cluster and 

its cluster head. In addition, messages are exchanged between cluster heads of neighboring boundary clusters to 

collaboratively estimate the boundary of R. 

 

2.2 ALGORITHM 

 
 

 

3. PERFORMANCE ANALYSIS 
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In this section, we first analyze the trade-off between communication cost and estimation error in the DBE 

algorithm. Then, we propose a two-step approach to spatial spectrum sensing based on the DBE algorithm, and 

compare its setup complexity and throughput with that of the traditional fusion center (FC) approach.  

 

3.1 Communication Cost and Estimation Error 

We let the SU locations be distributed as a homogeneous Poisson point process Π in Rd with rate λ, and assume that 

the region of interest A has unit d-dimensional volume. Since we do not have any prior knowledge of the SU 

locations, it is reasonable to assume that SUs are located independently and randomly. The homogeneous Poisson 

point process captures this assumption and has been widely adopted in the literature to model the distribution of ad 

hoc communicating devices. The Poisson point process also makes the mathematical analysis tractable, which 

provides insights into the system performance in practical scenarios. In Section V-C, we present simulation results 

for a specific case when SUs are not distributed according to a homogeneous Poisson point process. We consider the 

trade-off between communication cost and the estimation error resulting from the boundary estimation as the rate λ 

varies, and we determine an approximate optimal density for the SUs that minimizes a weighted sum of the 

communication cost and estimation error. Finding the optimal density is useful in the case where there are multiple 

PUs, and random subsets of SUs may be chosen to estimate the boundary of each PU. Intuitively, as SUs become 

more dense, the expected communication cost increasesbecause the number of SUs in each cluster and the number 

of boundary clusters increase, but the expected estimation error decreases due to the availability of more training 

examples. In the following, because of technical difficulties, we presentheuristic approximations to both the 

expected communication cost and estimation error, and determine the optimal density by minimizing a weighted 

sum of these approximations. We present simulation results in Section V to verify that the approximate optimal 

density found is close to the true optimal one. For simplicity, we assume that the boundary cluster heads all come 

from a fixed region D with volume b > 0, that this region contains the boundary of R, and that it is sufficiently small 

so that certain approximations, which we describe below, hold. In finding the optimal density, we will see that the 

region D need not be known in advance. We summarize some of the notations introduced in this section in Table II 

for ease of reference. 

1) Communication Cost: Suppose that the cost of sending a message from a SU at position x to another at position x_ 

is given by a non-negative function g(_x − x__) with g(0) = 0. In many wireless applications, this cost is modeled by 

the power required to achieve a given signal to noise ratio at the receiver, and g(r) is a function of the form crζ, 

where c > 0 and ζ ∈ [2, 5]. Let a disk of radius δ centered at x be denoted as Bx(δ), and let vd be the volume of a unit 

disk in Rd. The expected communication cost can be found by considering the intra-cluster communication cost and 

the intercluster communication cost separately. The intra-cluster cost 

 
Fig-2 Normalized estimation errors and total communication costs for 

different values 

4. SIMULATION RESULT 

In this section, we present simulation results to verify the performance of the DBE algorithm and the DBE-SS 

method. In each simulation run, 1000 sensors are uniformly distributed in a region A of size 5×5 km2, with the PU 

(e.g., a TV transmitter) located at the center of the region. We use the standard CCIR model [37] for the path loss. 

For each datapoint, we perform 1000 simulation runs using the parametersin Table III. 

A. Estimation Error and Communication Cost 

We compare the communication cost incurred and the estimation performance of the DBE algorithm with that 

of various benchmark algorithms, including the following: 
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1) Centralized boundary estimation algorithm based on LSSVM a global classifier is trained based on 

information from all SUs in the boundary clusters. 

2) Centralized image processing based seeded region growing (SRG) algorithm [38]: we regard the decision ui 

of each SU i as a pixel gray level in a binary image and segment the image by growing a region from a seed 

pointusing an intensity mean measure. 

3) Distributed Bayesian event region detection (ERD) algorithm a threshold decision scheme is appliedto 

correct the errors of local SU decisions. We refer the reader to for details. 

The estimation performance is evaluated according to , normalized by four times the area of R. Since the estimation 

function f takes values close to 1 or −1, the normalized estimation error is approximately the area in which 

misclassification occurs, expressed as a fraction of the area of R. The communication cost is computed by assuming 

that each message passed between two SUs a distance r apart incurs a cost of g(r) based on r2. Figure 2 shows the 

normalized estimation error and communication cost for each algorithm when choosing different values for ph, 

which is the probability that each SU independently nominates itself to be a cluster head. The threshold γ in the 

boundary cluster decision rule in Section III-A is set to be 0.6. As ph increases, the performance of the SR Gand 

ERD algorithms remain constant as these algorithms do not use clustering. 

 

 

 

 

 
Fig-3  Normalized estimation errors and total communication costs 

 

B. Throughput 

In this subsection, we present numerical results for the ROCs and throughputs of the FC and DBE-SS methods after 

boundary estimation with ph = 0.8 and γ = 0.6. Recall that the fusion center has no knowledge of the ROC of 

individual SUs, and a simple k-out-of-N fusion rule is utilized in place of optimal fusion. Figure 6 shows the ROC 

curves of the two methods. It is seen that the DBE-SS method has a higher detection probability for each false alarm 

probability because only information from SUs in R are utilized, leading to less errors. , we vary the detection 

probability and plot the PU throughput versus the throughput per SU for both DBESS and FC methods. The 

throughput per SU for the DBESS method is relatively flat over all PU throughputs as SUs outside Rˆ can transmit 

regardless of whether the PU is present or not. We also see that the SU throughput is higher than that for the FC 

method. Figure 8 shows the average SU throughput when the PU throughput is fixed at 4 bits/sec/Hz, and the 

volume of A is decreased. We see that the DBE-SS method should only be used if A is more than 10% larger than R. 
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Fig-4 Average throughput per SU as volume of A changes 

 

C. Robustness 

We now compare the robustness of the various boundary estimation algorithms. We fix ph = 0.8 and γ = 

0.6. To simulate SU sensing errors, a boundary cluster is randomly chosen with probability ς, and then a random 

subset of the SU sensing decisions in the chosen cluster is changed from −1 to 1, while an equal number of SU 

sensing decisions is changed from 1 to −1. We plot the average normalized estimation error  shows that our 

proposed DBE algorithm is more robust than the other benchmark boundary estimation methods, except for the 

centralized LSSVM method. We also compare with a modified version of the DBE algorithm in which we set ηj = 0 

for all j = 1, . . . , M so that the smoothness constraint (6) no longer applies. We see that including the smoothing 

constraint improves the robustness of our algorithm as neighboring boundary clusters moderate their local classifiers 

to avoid an abrupt change in the average classification function value within their clusters. Next, we compare the 

estimation error of the DBE algorithm with and without the smoothness constraint (6) when the SUs are no longer 

distributed as a homogeneous Poisson point process. With probability ω, a boundary cluster is independently 

populated with 20 SUs uniformly distributed inside the cluster. With probability 1−ω, a boundary cluster is divided 

into four quadrants, and a quadrant is chosen randomly. The chosen quadrant is then populated with 20 SUs 

uniformly.  we see that the smoothing constraint results in a lower estimation error shows a portion of the estimated 

boundaries.  

 

Fig-5 Robustness comparison of boundary estimation algorithms 

 

 

5. CONCLUSION 

 This work is done to estimate spectrum using adaptive boundary estimation algorithm for estimating 

boundary and no-talk region of primary users. And literature survey had been done and method used for execution is 
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discussed above. And also this estimation technique is more effective than all the other available spectrum 

estimation methods. And there is no estimation of boundary in the existing spectrum estimation models and my 

method will be also used for estimating boundary region. And the simulation of this adaptive boundary estimation 

algorithm for spectrum sensing in cognitive radio networks is done using MATLAB.  
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