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ABSTRACT   
The study carried out is based on Precipitation data for the study period from 1983 to 2012. The rainfall time series 

of Toliara (Madagascar) has been adjusted on probability laws to identify the recent law on precipitation. Four 

probability laws have been adapted on the amount of rain accumulated over the 30 years. The adjustment of the 

probability law on the pluviometer verifies that the rain height follows a generalized Pareto law.  
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1. INTRODUCTION 

Since the adjustment of the distribution function of rain values (cumulative rain values) by a probability law is part 

of the objective of our study. Thus, some mathematical properties deserve to be underlined to be able to carry out 

this research well. In probability theory or in statistics, a probability density is a function which makes it possible to 

represent a probability law in the form of integrals. It is a data analysis tool used in fields as varied as the study of 

climatology. The hypothesis which is made in this study is that the local rain phenomenon follows a stochastic 

process which remains to be determined and for this, the intensity of precipitation is a random variable whose 

characteristics we will endeavor to determine.  

2. METHODOLOGY 

 
2.1. Lognormal law 

Definition: A random variable 𝑋 with values in ]0, +∞[follows the log-normal distribution of parameters 𝒩(𝑚, 𝜎) if 

𝑌 =  𝑙𝑜𝑔 𝑋 follows the distribution𝒩(𝑚, 𝜎). 

The density of 𝑋 is then: 

𝑓(𝑥) = {
1

𝜎√2𝜋

1

𝑥
(−

1

2
(

𝑙𝑜𝑔𝑥−𝑚

𝜎
)

2

)        𝑖𝑓 𝑥 > 0

 0                                         𝑖𝑓 𝑛𝑜
  

𝑋 then admits a hope and a variance: 

𝐸(𝑋) = 𝑒𝑚+𝜎2/2   𝑎𝑛𝑑   𝑉(𝑋) = 𝑒𝑚+𝜎2
(𝑒𝜎2

− 1) 
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2.2. Beta Law 

Definition: A random variable X with values in [0,1] is said to follow the beta law of parameters 𝑟 >  0, 𝑠 >

 0 (𝑤ℎ𝑖𝑐ℎ 𝑤𝑒 𝑑𝑒𝑛𝑜𝑡𝑒 →  𝛽 (𝑟, 𝑠)) if it is absolutely continuous and admits for density: 

𝑓(𝑥) = {

1

𝛽(𝑟, 𝑠)
𝑥𝑟−1(1 − 𝑥)𝑠−1       𝑖𝑓    𝑥𝜖[0,1]

0                                   𝑖𝑓  𝑛𝑜

 

  

Law 𝛽 (1 / 2, 1 / 2) is also called the law of the arc sinus. 

X then admits an expectation and a variance: 

𝐸(𝑋) =
𝑟

𝑟 + 𝑠
         𝑎𝑛𝑑     𝑉(𝑋) =

𝑟𝑠

(𝑟 + 𝑠)2(𝑟 + 𝑠 + 1)
 

2.3. Gamma law 

Definition: We say that X follows the gamma distribution of parameters   𝑝 >  0, 𝜆 >  0, which we denote by 

𝑋 →  𝛤 (𝑝, 𝜆) if it is absolutely continuous, and admits for density: 

𝑓(𝑥) = {

𝜆

Γ(𝑝)
𝑒𝜆𝑥(𝜆𝑥)𝑝−1   𝑖𝑓 𝑥 > 0

0                        𝑖𝑓 𝑛𝑜

 

𝑋 then admits an expectation and a variance: 

𝐸(𝑋) =
𝑝

𝜆
       𝑎𝑛𝑑     𝑉(𝑋) =

𝑝

𝜆2
 

2.4. Generalized Pareto law 

Pareto's laws are very useful in Economics. They are also used for the properties of their distribution tails or survival 

functions which are decreasing of the “power” type, that is to say relatively slow. 

Definition:  A  𝑥 continuous random variable follows a Pareto law of parameters 𝛼, 𝑥0 ∈ ℝ+
∗  if it admits for 

probability density the function: 

∀ 𝑡 ∈  ℝ, 𝑓𝑋(𝑥) =
𝛼𝑥0

𝛼

𝑡𝛼+1
𝐼|𝑥0:+∞|(𝑡) = {

0                𝑖𝑓  𝑡 < 𝑥0

𝛼𝑥0
𝛼

𝑡𝛼+1
         𝑖𝑓 𝑡 > 𝑥0

 

3. RESULTS 

3.1. Comparison of the function of the cumulative values of rain with the different probability laws 

In the figure below, we have noticed that the rain data distribution function is an increasing function and whose 

values are positive. This curve shape prompts us to choose mathematical laws that seem to have the same variation 

for their distribution function to make the comparison, namely: the normal Log law; the Gamma law; The Beta law 

and the generalized law of Pareto.    
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Fig-1: Cumulated rainfall amounts from 1983 to 2012 

3.2.   Normal Log Law 

In probability and statistical theory, a random variable 𝑋 is said to follow a log-normal law of parameters µ and 𝜎 if 

the variable 𝑌 =  𝑙𝑛(𝑋)follows a normal law of expectation µ and  𝜎2variance. This law is sometimes also called 

Galton's law. A variable can be modeled by a log-normal distribution if it is the result of the multiplication of a large 

number of small independent factors.  

 
Fig-2: Adjustment of the normal log law on the height of cumulative rainfalls 
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For these curves (Figure 2), the normal log law has parameters µ =   −1,222  and   𝜎 =   1,3126.  

The normal Log distribution does not quite follow the variation of the cumulative rainfall curve. And we observe 

that the cumulative curve of the normal log law deviates from the cumulative rain function.  

3.3. Gamma law 

In probability theory and statistics, a Gamma distribution, or Gamma law (or, which corresponds to the capital 

(gamma) in Greek), is a type of probability law of positive real random variables. The family of Gamma 

distributions includes among others the exponential laws, the laws of sums of independent random variables 

following the same exponential law, as well as the law of χ². It therefore makes it possible to model a wide variety of 

phenomena for positive quantities. 

For our case the gamma law has parameters   𝑘 =  1,2476  and  𝜃 =   0,3707. The curve of the cumulative 

function of the gamma law (Figure 3) cannot follow the curve of the cumulative amount of rain, and it deviates. 

This means that the gamma law can no longer follow the trend of the data.  

This situation increased the value of the deviation from the curve of the cumulative function.    

 

Fig-3: Adjustment of the Gamma law on the height of the cumulative rains  

3.4.   Beta Law 

It is the law of a variable 𝑋;  0 ≤  𝑋 ≤  1depending on two real parameters  𝑛 𝑎𝑛𝑑 𝑝. These laws are used in 

BAYESIAN statistics to represent the priori distribution of the probability of an event. It is good to note that the 

cumulative function " F " of the heights of rains is presented by its normalized values, that means that its final value 

is equal to 1.   The Figure 4 illustrates the adjustment of the beta distribution on the cumulative rainfall height 

Toliara. It is observed that these two curves are almost confused, that is to say the difference between these curves is 

very small. For our case, the Beta law has parameters  𝑛 =  0,74118 𝑒𝑡  𝑝 =  0,8449. 
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Fig-4: Adjustment of the Beta law on the height of cumulative rainfalls 

3.5. General law of PARETO   

The Pareto distribution is a special type of power law that has its applications in the physical sciences. The 

parameters of the generalized Pareto law are determined by the values: 

𝑘 =  −0,9702 <  0 ;          𝒙𝒎 =    0,9702  𝑎𝑛𝑑  𝜃 =  0. 

For𝑘 < 0, the generalized Pareto distribution behaves like the BETA law for finite size. These two curves (Figure 

5) show that the Pareto distribution follows the shape of the cumulative function well. The law also manages to track 

the cumulative amount of rain. So the law of rain height in Toliara is follows the generalized law of Pareto.  

 
Fig-5: Adjustment of the generalized law of Pareto on the height of the cumulative rains 
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3.6.   Comparison of the four different laws 

The estimate generally represents only 95% of the distribution. 

 
Fig-6: Comparison of the various adjustments of the probability distribution of the height of the accumulated rains 

The Figure 6 shows the comparison of the various adjustments of the probability distribution on the rain height. We 

notice that the generalized law of Pareto is the most similar law of this distribution. It manages to follow the 

asymptotic behavior of the distribution curve. There is a divergence at the end of the curve for the normal log law 

and the gamma law. 

4. CONCLUSION 

The adjustment of the cumulative values of rain by different probability laws, namely: log-normal law, gamma law, 

beta law, generalized Pareto law, allowed us to note that among these four laws mentioned above, it is the 

generalized law of Pareto which is very close to the distribution of the cumulative heights of rain. 
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