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ABSTRACT 

 
In the realm of machine learning, models frequently encounter challenges stemming from unexpected or deliberately 

misleading inputs. To address these issues, our project provides a holistic solution aimed at mitigating accidental 

errors and thwarting malicious deception. Our approach primarily centers on two critical objectives: detecting 

anomaly, which represent unexpected data patterns, and fortifying defenses against adversarial attacks, wherein 

intentionally misleading data is crafted to exploit vulnerabilities in the model. Central to our strategy is the astute 

selection of examples to test our models, a pivotal aspect particularly vital in domains such as cybersecurity, fraud 

detection, and other mission-critical systems where the reliability and safety of model decisions are paramount. By 

meticulously choosing which instances to evaluate the model against, we enhance its robustness and resilience to 

unforeseen circumstances and adversarial manipulation. Through rigorous testing and validation procedures, we 

ensure that our models are equipped to handle a diverse array of scenarios effectively. This proactive approach not 

only bolsters the trustworthiness and dependability of machine learning systems but also safeguards against 

potentially catastrophic consequences resulting from erroneous or compromised decisions. In essence, our project 

strives to empower organizations across various sectors with cutting-edge tools and methodologies to navigate the 

complex landscape of machine learning, fostering a safer and more secure digital environment. 
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1. INTRODUCTION 

Machine learning (ML) technologies have witnessed remarkable advancements and widespread adoption across 

various industries, revolutionizing processes ranging from data analysis to decision-making. However, the increasing 

complexity and sophistication of ML models have brought to the forefront significant challenges, particularly 

concerning their susceptibility to unexpected anomaly and deliberate adversarial attacks. In critical domains such as 

cybersecurity, fraud detection, and vital systems where the stakes are high, ensuring the reliability and robustness of 

ML models is of paramount importance.  

This paper presents a comprehensive approach aimed at addressing the twin challenges of accidental errors and 

malicious deception in ML systems. Our research focuses on two key objectives: the detection of anomaly, which 

represent unexpected data patterns that could potentially compromise model performance, and the development of 

robust defenses against adversarial attacks, characterized by deliberately crafted inputs designed to deceive ML 

models. At the core of our approach lies a sophisticated methodology for intelligently selecting examples to test ML 
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models, thereby enhancing their resilience and reliability in real-world scenarios. By strategically prioritizing the 

testing of models with carefully chosen instances, we aim to fortify their defenses against unforeseen circumstances 

and adversarial manipulations. Our research not only contributes to advancing the state-of-the-art in ML security but 

also provides practical insights and methodologies for safeguarding critical systems against potential risks and 

vulnerabilities. Through rigorous experimentation, validation, and empirical analysis, we demonstrate the efficacy and 

practical applicability of our approach across diverse domains and datasets. The findings presented in this paper offer 

valuable contributions to the field of ML security, paving the way for the development of more robust and trustworthy 

ML systems capable of making reliable and safe decisions in high-stakes environments. 

 

 

1.1 Detection of anomaly 

We partition distributed machine learning (DML) into two distinct categories: basic distributed machine learning 

(basic-DML) and semi-distributed machine learning (semi-DML). This classification hinges on the involvement of 

the central entity in sharing resources during dataset training tasks. Following this categorization, we propose anomaly 

detection techniques tailored for both basic-DML and semi-DML settings, aiming to address the unique characteristics 

and challenges associated with each approach. 

 

 
 

1.2 Defending misleading Data  

Leveraging the insights from sensitivity to mutations and the proximity to the model's decision boundary, we propose 

an innovative approach called MLPrior. This method is designed to enhance the predictive power of machine learning 

models by incorporating three distinct types of features for each test instance. Firstly, we introduce mutation rules to 

generate two categories of mutation features: model mutation features and input mutation features. These features 

capture the model's susceptibility to mutations, thereby providing valuable insights into potential misclassifications. 

Secondly, MLPrior utilizes attribute features derived from the test instances' attribute values. These attributes 

indirectly reflect the proximity of each test to the model's decision boundary, aiding in the identification of tests that 

are more likely to be misclassified. Lastly, MLPrior integrates all three types of features into a comprehensive final 

vector for each test instance. This final vector serves as a holistic representation of the test's characteristics, combining 

information about mutation sensitivity, proximity to decision boundaries, and attribute values. Subsequently, MLPrior 

employs a pre-trained ranking model to predict the misclassification probability for each test instance based on its 

final vector. By leveraging this predictive model, MLPrior effectively prioritizes tests according to their likelihood of 

misclassification, thereby facilitating more efficient and targeted model evaluation and refinement processes. 

 

2. METHODOLOGIES 

2.1 Anomaly Detection in Basic Distributed Machine Learning (Basic-DML) 

This section delves into the detection of anomaly the basic-DML setting, where the central entity lacks additional 

computing resources to allocate to sub-dataset training tasks. In this scenario, the central entity solely aggregates the 

training outcomes from distributed workers. The anomaly detection framework in the basic-DML context comprises 

three key components:  
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A) A parameter threshold 

Machine learning's internal mechanisms are often not fully understood, making it difficult to quantify differences 

between learned models. An efficient machine learning algorithm should exhibit convergence, meaning models 

learned from the same algorithm and dataset should not have significant differences. To address this, a threshold of 

parameters is proposed to identify anomalous models, particularly in basic distributed machine learning (basic-DML) 

scenarios. The threshold of parameters aims to distinguish abnormal models by setting a threshold based on the range 

of parameters obtained from training a dataset multiple time. This algorithm is proposed to obtain this threshold by 

selecting a dataset with similar characteristics to the training dataset, training it multiple times, and using the resulting 

parameter sets to establish the threshold. 

 

B) A cross-learning mechanism 

The cross-learning mechanism duplicates sub-datasets to lay the groundwork for identifying poisoned datasets. With 

T workers, the training dataset is divided into T (where T is a natural number) sub-datasets. Each sub-dataset is then 

assigned to two workers, yielding two corresponding training outcomes. Virtual connections form between workers 

who receive the same sub-datasets, constructing a virtual topology. This topology abstracts connections between 

workers, aiding in the identification of training loops. The number of training loops in the virtual topology influences 

the effectiveness of the anomaly detection scheme. In a basic-DML system employing the cross-learning mechanism, 

the virtual topology typically comprises one or several training loops. 

 

C) A method for identifying abnormal training outcomes. 

In the cross-learning mechanism, each sub-dataset is distributed to two different workers, resulting in two training 

results for each sub-dataset. These results are compared using the Euclidean distance to detect suspicious sub-datasets. 

This algorithm outlines the anomaly detection scheme, where the difference between parameter sets from the same 

sub-dataset is measured. If the difference exceeds a threshold ε, indicating potential poisoning, the sub-dataset is 

flagged and sent for relearning. However, this scheme has limitations in detecting all poisoned sub-datasets, 

particularly when an attacker compromises two workers with the same sub-dataset. In such cases, the center cannot 

differentiate between the compromised workers. 

 

2.2 Anomaly detection using Semi Distributed Machine Learning (Semi-DML) 

In this section, we introduce an enhanced anomaly detection scheme, referred to as the improved scheme, tailored for 

the semi-DML scenario. In semi-DML, the central entity shares spare resources for dataset training tasks. Building 

upon the elements of the anomaly detection scheme in the DML scenario, the improved scheme incorporates central 

assistance as an additional element. This allows the center to learn part or all of the sub-datasets, or verify worker 

results by relearning suspicious sub-datasets. The allocation of central resources significantly impacts system resource 

costs, making efficient resource utilization a crucial consideration. 

 

2.3 Test prioritization using ML Prior 

In this paper, we propose MLPrior, a test prioritization approach specifically designed for classical ML 
models. Below Fig illustrates the workflow of MLPrior. 
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A) Attribute Feature Generation  

At the outset, MLPrior undertakes attribute feature generation by converting the attribute values of each test instance. 

This transformation involves converting non-numeric attributes into a numeric format. To achieve this, a mapping 

dictionary is created, encompassing all non-numeric attributes paired with their corresponding numeric values. For 

example, in the context of the attribute "gender," the values "male" and "female" are mapped to 0 and 1, respectively. 

 

B)  Mutation feature generation 

MLPrior generates a collection of mutated models based on the original ML model M. MLPrior generates mutated 

inputs for each test instance. Subsequently, it compares the predictions of model M on the mutated input with its 

predictions on the original test input. 

 

C) Feature Concatenation 

For each test ML Prior concatenates the three types of feature vectors constructed in the previous steps and obtain a 

final vector. 

 

D)Learning to Rank 

MLPrior utilizes its Final vector as input for a pre-trained XGBoost ranking model. This model calculates the 

probability of the input being misclassified. Subsequently, MLPrior ranks all tests based on their probability scores in 

descending order, prioritizing potentially misclassified tests accordingly. 

 

3. APPROACH 

3.1 Anomaly Detection 

In the realm of distributed machine learning (DML), we delineate two distinct paradigms: basic-DML and semi-DML. 

In basic-DML, the central server delegates learning tasks to distributed machines and consolidates their learning 

outcomes. Conversely, in semi-DML, the central server extends its role to include direct involvement in dataset 

learning, augmenting its responsibilities from basic-DML. We introduce a pioneering anomaly detection scheme 

tailored for basic-DML, leveraging a cross-learning mechanism to uncover poisoned data instances. Demonstrating 

the efficacy of this mechanism, we establish its propensity to generate training loops, thereby enabling the 

development of a mathematical model to identify the optimal number of training loops. In the context of semi-DML, 

we present an enhanced anomaly detection scheme aimed at bolstering learning protection, with the central resource 

playing a pivotal role. To optimize system resources, we devise an approach for optimal resource allocation. 

Simulation results underscore the effectiveness of our proposed schemes. In the basic-DML scenario, our approach 

significantly enhances the accuracy of the final model, yielding improvements of up to 20% for support vector 

machines and 60% for logistic regression. Furthermore, in the semi-DML scenario, the improved anomaly detection 

scheme coupled with optimal resource allocation demonstrates a notable reduction in wasted resources, ranging from 

20% to 100%. These findings underscore the efficacy and practical relevance of our proposed schemes in enhancing 

the security and efficiency of distributed machine learning systems. 

 

3.2 Test Prioritization 

Test prioritization is done using ML Prior algorithm. MLPrior begins its process with attribute feature generation, 

wherein it converts the attribute values of each test instance into a numeric format. This conversion involves the 

creation of a mapping dictionary that pairs non-numeric attributes with their corresponding numeric values. For 

example, attributes such as "gender" are mapped to numeric values (e.g., "male" to 0 and "female" to 1). Following 

this, MLPrior proceeds to mutation feature generation, where it generates a series of mutated models based on the 

original ML model M. For each test instance, MLPrior generates mutated inputs, which are then compared with the 

predictions of model M on the original test input to identify any discrepancies. Subsequently, MLPrior conducts 

feature concatenation, combining the three types of feature vectors constructed in the previous steps to create a final 

vector for each test instance. This final vector consolidates essential features required for subsequent analysis. Finally, 

MLPrior employs a pre-trained XGBoost ranking model to evaluate the final vectors, calculating the probability of 

each input being misclassified. Based on these probability scores, MLPrior ranks all tests in descending order, 

prioritizing potentially misclassified tests for further investigation and corrective actions. This holistic approach 

ensures comprehensive detection and prioritization of potentially problematic instances within the ML model. 
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4. RESULTS  

Anomaly detection where the accuracy of basic distributed machine learning and semi distributed machine learning 

of the data’s have been shown in below figure. 
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Test input prioritization of multiple data for each and all models of ML Prior algorithm have been displayed in below 

figure. 

 
 

 
5. CONCLUSION  

The model proves the accuracy of the data for basic-DML increases up to 20% for svm and semi-DML decreases 

waste resource for 20-100% and the superior performance of MLPrior compared to existing methods, with an average 

improvement of 14.74%∼66.93% on natural datasets, 18.55%∼67.73% on mixed noisy datasets, and 15.34%∼ 

62.72% on fairness datasets. 
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