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Abstract 

In this paper, we trace the development of the theory of the calculus of variations. From its roots in the work of 

Greek thinkers and continuing through to the Renaissance, we see that advances in physics serve as a catalyst 

for developments in the mathematical theory. From the 18th century onwards, the task of establishing a 

rigourous framework of the calculus of variations is studied, culminating in Hilbert’s work on the Dirichlet 

problem and the development of optimal control theory. Finally, we make a brief tour of some applications of 

the theory to diverse problems. 

 

 

Introduction 

 
 

Consider the following three problems: 

 
1) What plane curve connecting two given points has the shortest length? 

 

2) Find the minimum surface of revolution passing through two given fixed points, 

(xA, yA) and (xB, yB). 

 

Both these problems can be solved by the calculus of variations. A  field  developed 

primarily in the eighteenth and nineteenth centuries, the calculus of variations has been 

applied to a myriad of physical and mathematical problems since its inception. In a sense, 

it is a generalization of calculus. Essentially, the goal is to find a path, curve, or surface 

for which a given function has a stationary value. In our two introductory problems, for 

instance, this stationary value corresponds to aminimum. 
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The variety and diversity of the theory’s practical applications is quite astonishing. From 

soap bubbles to the construction of an ideal column and from quantum field theory to 

softer spacecraft landings, this venerable branch of mathematics has a rich history and 

continues to spring upon us new surprises. Its development has also served as a catalyst 

for theoretical advances in seemingly disparate fields of mathematics, such as analysis, 

topology, and partial differential equations. In fact, at least two modern (i.e. since the 

beginning of the twentieth century) areas of research can claim the calculus of variations 

as a common ancestor; namely Morse theory and optimal control theory. Since the  

theory was initially developed to tackle physical problems, it is not surprising that 

variational methods are at the heart of modern approaches to problems in theoretical 

physics. More surprising is that the calculus of variations has been applied to problems  

in economics, literature, and interior design! 

 

In the course of this paper, we will trace the historical development of the calculus of 

variations. Along the way, we will explore a few of the more interesting historical 

problems and applications, and we shall highlight some of the major contributors to the 

theory. First, let us get an intuitive sense of the theory of the calculus of variations with 

the following mathematical interlude.  

 

 

Mathematical Background 

 

In this section we derive the differential equation that y(x) must obey in order to 

minimize theintegral 

 

I  
xB  

f(x,y,y )dx 
xA 

 

where xA, xB, y(xA) = yA, y(xB) = yBand f are all given, and f is assumed to be a twice- 

differentiable function of all its arguments. Let us denote the function which minimizes I 

to be y(x). Now consider the one-parameter family of comparison functions (or test 
functions),~y(x,), which satisfy the conditions: 
 

a) ~y(XA )  yA ,  
~y(xB,) yB  for all ; 

                                   

b) ~y(x,0) y(x), the desired minimizing function; 

c) ~y(x,) and all its derivatives through second order are continuous functions 

of x and . 

 

For a given comparison function, the integral 

 

I()  
xB  

f (x,~y ,~y')dx 
xA 

is clearly a function of .  Also, since setting  = 0 corresponds, by condition (b), 

to replacing ~y by y(x) and ~ y' by y'(x), we see that I() should be a minimum with respect to  

for the value  = 0 according to the designation that y(x) is the actual minimizing 

function.This is true for any ~y(x,). 
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A necessary condition for a minimum is the vanishing of the first derivative.Thus we have 
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




 




 






 



% A 

dI 
0

 

d0 

as a necessary condition for the integral to take on a minimum value at  = 0. 

Differentiating w.r.t  (remembering that x isafunction only of y and ~y), we get: 
dI






xB 
f 

~y

f ~y 

dx x   ~ ~ 
d A y y 

and by condition (c), we can write this as: 
dI


xBfdy%

fd 

 
  

dy% 
dx.

 
 

d x Ay%d y% dx


d




Integrating the second term by parts gives us: 
xB dI


xBfdy%

dx
dy%f


  

 
xBdy% d df 


dx . 

d xA y%d

dy 




A 

xd dx


dy% 



Now by condition (a), ~y(x A,) y A and ~y(x ,) yB for all .Therefore, 

 

 

and in the end, we get: 

dy%

d




xxA 

0
dy% 

d




xxB 

dI 


xB f 
 

 

 
d f dy%

dx.
 

 

d x Ay% 
dx


y% 


d

We now require that I() have a minimum at = 0, that is 
dI 


xBf 

 
 


d f  dy%


 

dx . 
  x    
d0 Ay% dxy% 0

d0 

If we set  = 0, this is the same  as setting ~y(x,)=y(x),~y'(x ) = 
y'(x),  and 

~y''(x,)  y''(x). (Note that the integrand depends on ~y'' and in taking the limit = 0,  

we need to know that the second derivative ~y''(x,) is a continuous function of its 

two variables. This is guaranteed by condition (c). 
 

Now if we set 

 

 
we obtain 

 
dy%

 
 

(x), 
d0 

xB f 
 

d f 
 

 


(x)dx 0. 

xAy% dx

y% 




Now (x) vanishes xA   and xB  by condition (a) and it is continuous and 

differentiable by condition (c). (x) is completely orbitrary. 

Therefore for the integral above to vanish,

B 
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
 




 



 

f 


d 
 

 

f 

0. 

y dx

y 




This is known as the Euler-Lagrange equation, which is used to develop the Lagrangian 

formulation of classical mechanics. If we expand the total derivative with respect to x,  

we get 

f 



2
f 

y xy 


2
f 


yy 

y 



2
f 


2
y 2

y 0. 

This is a second-order differential equation, whose solution is a twice-differentiable 

minimizing function y(x), provided a minimum exists. Note that our initial condition of 

dI 
0

 

d0 

is only a necessary condition for a minimum.The solutiony(x) could also 

produce a maximum or an inflection point. In other words, y(x) is an extremizing function. 

[5] 

 

 

Euler, Maupertuis, and the Principle of Least Action 

 

The brilliant and prolific Swiss mathematician Leonhard Euler (1707-1783) had close ties 

to the Bernoulli family. Not only was his father, Paul Euler, friends with Johann but Paul 

had also lived in Jakob’s house while he studied theology at the University of Basel.  

Paul Euler had high hopes that, following in his footsteps, his son would become a 

Protestant minister. However, it was not long before Johann, who was Leonhard’s 

mentor, noticed the young boy’s mathematical ability while he was a student (at the age 

of fourteen) at the University of Basel. In Euler’s ownwords: 

 
I soon found an opportunity to be introduced to a famous professor Johann 

Bernoulli. ... True, he was very busy and so refused flatly to give me private 

lessons; but he gave me much more valuable advice to start reading more 

difficult mathematical books on my own and to study them as diligently as I 

could; if I came across some obstacle or difficulty, I was given permission to  

visit him freely every Sunday afternoon and he kindly explained to me 

everything I could notunderstand…[18] 

 

Given his close relationship with the Bernoullis, it is not surprising that Euler became 

interested in the calculus of variations. As early as 1728, Leonhard Euler had already 

written “On finding the equation of geodesic curves.” By the 1730s, he was concerning 

himself with isoperimetric problems. 

 

In 1744, Euler published his landmark book Methodus inveniendi lineas curvas maximi 

minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu 
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accepti (A method for discovering curved lines that enjoy a maximum or minimum 

property, or the solution of the isoperimetric problem taken in the widest sense). Some 

mathematicians date this as the birth of the theory of the calculus of variations [14]. 

 

Euler took the methods used to solve specific problems and systematized them into a 

powerful apparatus. With this method, he was then able to study a very general class of 

problems. His opus considered a variety of geodesic problems, various modified and 

more general brachistochrone problems (such as considering the effects of a resistance to 

the falling body), problems involving isoperimetric constraints, and even questions of 

invariance. Although few mathematicians before Euler would give a second thought to 

such things, he examined whether his fundamental conditions would remain unchanged 

under general coordinate transformations. (These questions were not  completely  

resolved until the twentieth century.) 
 

Also in this publication, it was shown for the first time that in order for y(x) , satisfying 

I
xB

f(x,y,y)dx, 
xA 

y(x A) yA, y(x B) yB , xA xB , 

to yield a minimum of I, then a necessary condition is the so-called Euler-Lagrange 

equation (which first appeared in Euler’s work eight years previously) 
 

f 


d 
 

 

 

 

f 

0. 
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y dx

y 






Another important element of Euler’s exposition was his statement and discussion of a 

very important principle in mechanics. However, it has also been attributed to another, 

lesser, mathematician. 

Returning to Euler, and his magnificent work of 1744, we see strikingly similar ideas but 

without the theological overtones. Near the beginning of the section on the principle of 

least action, Euler writes: 

 
Since all the effects of Nature follow a certain law of maxima or minima, there is 

no doubt that, on the curved paths, which the bodies describe under the action of 

certain forces, some maximum or minimum property ought to obtain. What this 

property is, nevertheless, does not appear easy to define a priori by proceeding 

from the principles of metaphysics; but since it may be possible to determine 

these same curved paths by means of a direct method, that very thing which is a 

maximum or minimum along these curves can be obtained with due attention 

being exhibited. But above all the effect arising from the disturbing forces ought 

especially to be regarded; since this [effect] consists of the motion produced in 

the body, it is consonant with the truth that this same motion or rather the 

aggregate of all motions, which are present in the body ought to be a minimum. 

Although this conclusion does not seem sufficiently confirmed, nevertheless if I 

show that it agrees with a truth known a priori so much weight will result that all 

doubts which could originate on this subject will completely vanish. Even better 

when its truth will have been shown, it will be very easy to undertake studies in 

the profound laws of Nature and their final causes, and to corroborate this with 

the firmest arguments [11]. 

 

As often happens in mathematics even today, there was a bitter dispute as to the priority 

of the discovery of the principle of least action. In 1757, the mathematician König 

produced a letter supposedly written by Leibniz in 1707 that contained a formulation of 

the principle of least action. At the time, Maupertuis, who was a headstrong and virulent 

man, was the president of the Prussian Academy and had a sharp reaction to this claim. 

He accused his fellow-member of plagiarism and was convinced that the letter was a 

forgery. Ironically, Euler sided with his French colleague in this affair, even though it is 

possible (and perhaps most likely) that it was Euler himself who was the first to put his 

finger on the principle. 

 

An additional topic of interest stemming from Euler’s opus of 1744 is that of minimal 
surfaces. One of the most fascinating areas of geometry, minimal surfaces are obtained 

from the calculus of variations as portions of surfaces of least area among all surfaces 
bounded by a given space curve. Euler discovered the first non-trivial such surface, the 

catenoid, which is generated by rotating a catenary (i.e. a cosh curve or the curve of a 

hanging chain); for example, r A cosh x, where r is the distance in 3-dimensional space 

from the x-axis [5]. We will have more to say about minimal surfaces later. 
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While it is true that a short time later, Euler’s technique was superseded by that of 

Lagrange (as we shall soon see), at the time it was completely new mathematics. His 

systematic methods, in an elegant form, were remarkable for their clarity and insight. As 

the twentieth century mathematician Carathéodory, who edited Euler’s works, wrote in 

the introduction, 

 
[Euler’s book] is one of the most beautiful mathematical works ever written. We 

cannot emphasize enough the extent to which that Lehrbuch over and over again 

served later generations as a prototype in the endeavour of presenting special 

mathematical material in its [logical, intrinsic] connection [14]. 

 

Lagrange 

 

In 1755, a 19-year-old from Turin sent a letter to Euler that contained details of a new 

and beautiful idea. Euler’s correspondent, Ludovico de la Grange Tournier, was no 

ordinary teenager. Less than two months after he wrote that fateful letter to Euler, the 

man we now know as Joseph-Louis Lagrange (1736-1813) was appointed professor of 

mathematics at the Royal Artillery School in Turin. His rare gifts, his humility, and his 

devotion to mathematics made him one of the giants of eighteenth century mathematics. 

He contributed much groundbreaking work in fields as diverse analysis, number theory, 

algebra, and celestial mechanics. However, it was with the calculus of variations that his 

early reputation wasmade. 

 

In his first letter to the legendary Swiss mathematician, Lagrange showed Euler how to 

eliminatethetediousgeometricalmethodsfromhisprocess. Essentially,Lagrangehad 

developed the idea of comparison functions (like the (x) function used in the 

mathematical background section above), which lead almost directly to the Euler- 

Lagrange equation. After considering Lagrange’s method, Euler became an instant 

convert, dropped his old geometrical methods, and christened the entire field by the name 

we now use, the calculus of variations, in honour of Lagrange’s variational method [11]. 

 

With the recipe reduced to a much simpler analytic method, even more general results 

could be obtained. The following year, in 1756, Euler read two papers to the Berlin 

Academy in which he made liberal use of Lagrange’s method. In his first paper, he was 

quick to give the young man from Turin his due: 

 
Even though the author of this [Euler] had meditated a long time and had 

revealed to friends his desire yet the glory of first discovery was reserved to the 

very penetrating geometer of Turin, Lagrange, who having used analysis alone, 

has clearly attained the very same solution which the author had deduced by 

geometrical considerations[11]. 

 

The two great mathematicians corresponded frequently over the next few years, with 

Lagrange working hard to extend the theory. Toward the end of 1760, he was able to 

publish a number of his results in Miscellanea Taurinensia, a scientific journal in Turin, 

under the title Essai d’une nouvelle méthode pour déterminer les maxima et les minima 

des formules intégrals indefinites (Essay on a new method for determining maxima and 

minima for formulas of indefinite integrals). Solutions to more general problems we 
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investigated for the first time, such as variable end-point brachistochrone problems, 

finding the surface of least area among all those bounded by a given curve (a problem that 

we associate today with Plateau), and finding the polygon whose area is greatest among all 

those that have a fixed number of sides. An apt résumé of the advances of the new theory 

comes from the pen of Lagrange himself: 

 
Euler is the first who has given the general formula for finding the curve along 

which a given integral expression has its greatest value…but the formulas of this 

author are less general than ours: 1. because he only permits the single variable y 

in the integrand to vary; 2. because he assumes that the first and last points of the 

curve are fixed…By the methods which have been explained one can seek the 

maxima and minima for curved surfaces in a most general manner that has not 

been done till now [11]. 

 

It was also in this early work of Lagrange that his famous rule of multipliers was first 

discussed. However, the generality and power of the method was not clear to him at that 

time and it was not until his path-breaking tour de force Méchanique analytique (1788), 

that he clearly expressed the rule in its modern form. 

 

When trying to extremize a function, often difficulties arise when the function is subject 

to certain outside conditions or constraints. In principle, we could use each constraint to 

eliminate one variable at a time, thereby reducing the problem progressively to a simpler 

and simpler one. However, this can be both tedious and time consuming. Lagrange’s 

method of multipliers is a powerful tool that allows for solutions to the problem without 

having to solve the conditions or constraints explicitly. Let us now show the solution of 

such a problem, arising from a simple quantum mechanical system. 

 
Consider the problem of a particle of mass m in a box, which we can consider as 

a parallelepiped with sides a, b, and c. The so-called ground state energy of the 

particle is givenby 
 

h
2
1 1 1

E 
8m 


a

2


b
2


c
2,

 
 

where h is Planck’s constant. Now suppose we wish to find the shape of the box 

that will minimize the energy E, subject to the constraint that the volume of the 

box is constant, i.e. 
 

V (a, b, c) abc k. 
 

Essentially, we need to minimize the function E(a, b, c) subject to the constraint 

(a,b,c)abck0. For the variable a, this implies that 
 

E 





h2 

 


a a 4ma
3
 

bc 0, 
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abc  

where  is an arbitrary constant (called the Lagrange multiplier). Of course we 

have similar equations for the other variables: 
 

 
h2 

4mb
3
 
 ac 0,  

h2 

4mc
3
 
 ab 0. 

 

After multiplying the first equation by a, the second by b, and the third by c, we 

obtain 
 

 
h2 h2 h2 

 

  

4ma
2
 4mb

2
 4mc

2
 

 

Hence, our solution is a b c, which is a cube. Notice how we did not even 

need to determine the multiplier  explicitly [2]. 

The Méchanique analytique was an ambitious undertaking, as it summarized all the work 

done in the field of classical mechanics since Newton. In fact, as books on mechanics go, 

it is mentioned in the same breath as Newton’s Philosophiae naturalis principia 

mathematica. Whereas Newton considered most problems from the geometrical point of 

view, Lagrange did everything with differential equations. In the preface, he even states 

that 

 
…one will not find figures in this work. The methods that I expound require 

neither constructions, nor geometrical or mechanical arguments, but only 

algebraic operations, subject to a regular and uniform course [11]. 

 

Classical mechanics had really come of age with Lagrange. Building on the  great 

insights of Euler, Lagrange was able to rescue mechanical problems from the tedium of 

geometrical methods. His approach is still meaningful today and it forms one of the 

cornerstones of the mathematical framework of modern theoretical physics. As it turns 

out, there was still much work to be done in the calculus of variations. There were 

unforeseen problems with the approach of Euler and Lagrange. However, let us pay our 

debt to Lagrange by remembering the words of Carl Gustav Jacob Jacobi (1804-1851), 

who was one the main contributors to the theory of variational problems in the nineteenth 

century: 

 
By generalizing Euler’s method he arrived at his remarkable formulas which in 

one line contain the solution of all problems of analytical mechanics. 

 

[In his Memoir of 1760-61] he created the whole calculus of variations with one 

stroke. This is one of the most beautiful articles that has ever been written. The 

ideas follow one another like lightning with the greatest rapidity [14]. 

. 
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x 

Legendre 

 

In 1786, Adrien-Marie Legendre (1752-1833) presented a memoir to the Paris Academy 

entitled Sur la manière de distinguer les maxima des minima dans le calcul des variations 

(On the method of distinguishing maxima from minima in the calculus of variations). 

Legendre was a well-known mathematician from Paris who developed many analytical 

tools for problems in mathematical physics and served as editor for Lagrange’s 

Méchanique analytique. 

 

Legendre considered the problem of determining whether an extremal is a minimizing or 

a maximizing arc. Let us recall that in extrema problems of one variable calculus, we 

consider not only points where the first derivative vanishes, but we also study the second 

derivative at these points. Similarly, Legendre examined the “second variation” of the 

functional, motivated by the theorem ofTaylor: 
 

2 xB 2 
2 

 
 

 
2


I 
0 

 
A 2 

fyy 2fyy   fy y  dx. 




Legendre was able to show the condition 

 

 

 

 

fy y 0 along a minimizing curve and 

 

 

fy y'  0 
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along a maximizing curve, which is surprisingly similar to what we obtain in elementary 

calculus in the second derivative test! In spite of the fact that he was on the right track, 

Legendre’s attempt to show that this condition is both necessary and sufficient was not 

quite correct [11], [14]. The idea did not catch on and by the time Lagrange levelled 

several objections to the second variation approach in his Théorie des fonctions 

analytiques (1797), it appeared that the death knell has sounded for Legendre’s innovative 

idea. 

 

Hamilton-Jacobi Theory 
 
While not directly connected with the development of the theory of the calculus of 

variations, it is timely to draw attention to another aspect of Jacobi’s work. In the mid 

1830s, a Scottish mathematician named William Rowan Hamilton (1788-1856) 

developed the foundations of what we now call Hamiltonian mechanics. Closely related 

to the methods developed by Lagrange, Hamilton showed that under certain conditions, 

problems in mechanics involving many variables and constraints can be reduced to an 

examination of the partial derivatives of a single function, which we now appropriately 

call the Hamiltonian. In the original papers of 1834 and 1835,  

 

Nineteenth Century Applications to Other Fields: Edgeworth and Poe 

 

By the nineteenth century, mathematical methods had advanced further than many had 

dreamed possible. Previously unsolved problems in physics, astronomy, engineering, and 

technology were being overcome at last. New theories were being developed at a speed 

never seen before, with a startling predictive nature that few imagined possible. One only 

needs to consider Newtonian mechanics, the developments in understanding 

thermodynamic systems, or especially, the elegant systematization of the theories of 

electricity and magnetism laid out in Maxwell’s equations. How natural, then that people 

tried to apply the same powerful techniques to other disciplines. In some cases,  a measure 

of success was attained. In other cases, the results seem laughable. 

 

In 1881, a book appeared with the title Mathematical Psychics: An Essay on the 

Application of Mathematics to the Moral Sciences [19]. The author was Francis 

Edgeworth (1845-1926), an English economist. A primary goal of the text was to 

construct a model of human science in which ethics can be viewed as a science. Today, 

the book is remembered chiefly for the merit of its ideas for economic theory. For us, the 

most interesting part of the book is the section on utilitarian calculus. Inspired by the 

utilitarian Jeremy Bentham (1748-1832), Edgeworth used the mathematical techniques of 

the calculus of variations in an effort to extremize the happiness function, or a function 

that was designed to measure the achievement of the ultimate good in society. 

 

Defining fundamental units of pleasure within the context of human interpersonal 

contracts, Edgeworth was able to obtain an equation involving the sum over all 

individuals’ utility. Despite variations from point to point, Edgeworth hypothesized that 

there would exist a locus at which the sum of the utilities of the individuals is a maximum. 

Edgeworth called this the utilitarian point. Edgeworth was quick to realize that the 

Benthamite slogan, “the greatest happiness of the greatest number” needed restating in a 

more precise form. After some mathematical labour, he was able to show that “the 
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u 

ultimate good was to be conceived as the maximum value of the triple integral over the 

variables ‘pleasure,’ individuals, andtime.” 

 

In retrospect, it is hardly surprising that this treatise has no impact on the development of 

moral and ethical philosophy. 

 

Caught up in the spirit of things, and inspired by the writings of the greatest 

mathematicians on the calculus of variations, Edgar Allan Poe (1809-1849) published a 

story in 1841 called Descent into the Maelstrom [12]. In the story, the protagonist is able 

to survive a violent storm by noting certain critical properties of solids moving in a 

resisting medium: 

 
...what I observed was, in fact, the natural consequence of the forms of floating 

fragments...a cylinder, swimming in a vortex, offered more resistance to its 

suction, and was drawn in with greater difficulty than any equally bulky body, of 

any form whatever. 

 

Poe was inspired, no doubt, by Newton’s Principia. Fortunately for Poe, good science is 

not needed in order to tell a good story. In the story, it is claimed that the sphere offered 

the minimum resistance, although Newton showed long ago that this is not the case. In 

addition, Newton’s results were only good for bodies moving through a motionless fluid, 

not a violent sea. In any case, it is still a good example of how science can motivate the 

creative arts. 

 

Riemann, Dirichlet, and Weierstrass 

 

It is surprising to discover that the development of the theory of the calculus of variations 

not only impacted physical problems and the theory of partial differential equations, but 
also the fields of classical analysis and functional analysis. In the mid-1800s, many 

mathematicians, such as Bernhard Riemann (1826-1866) and Gustave Lejeune Dirichlet 

(1805-1859) searched for general solutions to boundary value and initial value problems 
of partial differential equations arising in physical problems. Problems of this type are of 

great importance in physics, as they are basic to the understanding of gravitation, 
electrostatics, heat conduction, and fluid flow. One of the problems that attracted many  

of the top mathematicians of the day was an existence proof of a solution u, in a general 

domain ,satisfying: 
 


2
u 0 in ; 

 
f, uC

2
()C

0
(), R

2
or R

3
, 

 

where 
2
uuxx  uyyuzz . This  is  known  as  a Dirichlet probleme. Riemannused 

principles from the calculus of variations to develop a proof of this, which was a problem 

he had first seen in lectures by Dirichlet. He named it Dirichlet’s principle and stated it  

as follows 
 

There exists a function u that satisfies the condition above and that minimizes the 

functional 
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Du
u 

2
dV, R

2
or R

3
, 
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among all functions u C 
2
() C 

0
() which take on given values f on the 

boundary of . 
 

Dirichlet’s principle had been used earlier by Gauss (1839) and Lord Kelvin (1847) 

before Riemann used the principle in 1851 in order to obtain fundamental results in 

potential theory using complex analytic functions [15], [16]. However, something was 

not quite right with the theory. As one mathematiciannoted: 

 
It was a strange situation. Dirichlet’s principle had helped to produce exciting 

basic results but doubts about its validity began to appear, first in private remarks 

of Weierstrass - which did not impress Riemann, who placed no decisive value 

on the derivation of his existence theorems by Dirichlet’s principle - and then, 

after both Dirichlet and Riemann had died, in Weierstrass’s public address to the 

BerlinAcademy... 

 

As it turns out, there was a fundamental conceptual error involved in the faulty method of 

proof employed by Riemann. He failed to distinguish the differences between a greatest 

lower bound and a minimum for the Dirichlet problem. Karl Weierstrass (1815-1897) 

was the first to point out that in some cases, a minimizing function can come arbitrarily 

close to the lower bound without ever reachingit. 

The breakdown of Dirichlet’s principle (which had been the basis for many new results) 

turned out to be very beneficial for the theory of analysis. In an effort to patch up the 

theory, three new methods of existence proofs were developed, by Hermann Schwarz 

(1843-1921), Henri Poincaré (1854-1912), and Carl Neumann (1832-1925) [15]. 

 

Beginning in the 1870s, Weierstrass gave the theory of the calculus of variations a 

complete overhaul. It took quite some time for these results to become widely known to 

the rest of the mathematical community, principally through the dissertations of his 

graduate students. Known for his rigourous approach to mathematics, Weierstrass was  

the first to stress the importance of the domain of the functional that one is trying to 

minimize. He also examined the family of admissible functions satisfying all of the 

constraints. His most notable accomplishment was the fact that he gave the first ever 

completely correct sufficiency theorem for a minimum. Two new concepts, the field of 

extremals and the E-function, were developed in order to tackle the problem of 

sufficiency and a new type of minimum (a so-called strong minimum) was defined [15], 

[16]. 

 

Philosophical Interlude 

 

To the applied mathematician or physicist, all of this work to define conditions of 

sufficiency for the existence of an extremum might sound like splitting hairs. As Göthe 

wrote in Maxims and Reflections, 

 
Mathematicians are like a certain type of Frenchman: when you talk to them they 

translate it into their own language, and then it soon turns into something 

completely different. 

 



Vol-9 Issue-4 2023                IJARIIE-ISSN(O)-2395-4396 

     

21072  ijariie.com 355 

For problems in mechanics, for example, the Euler-Lagrange equation works perfectly 

well ninety-nine times out of a hundred - and when it doesn’t, then it should be physically 

obvious. This point of view was expressed by Gelfand and Fomin: 

 
...the existence of an extremum is often clear from the physical or geometric 

meaning of the problem, e.g., in the brachistochrone problem... If in such a case 

there exists only one extremal satisfying the boundary conditions of the problem, 

this extremal must perforce be the curve for which the extremum is achieved [17]. 

 

The rigourous mathematician would surely answer that in mathematics, conclusions 

should be logically deducible from initial hypotheses. And when it comes to a physical 

model, the mathematician would no doubt remind us that we should be mindful of the 

assumptions and idealizations we make for the sake of simplicity, and the consequences 

these assumptions entail. 

 

In reality, what is truly surprising is not that mathematicians fought over the smallest 

details of the calculus of variations for more than one hundred years, but that it took so 

long for anyone to realize the elementary mistakes that Euler made when he first 

examined these problems. A twentieth century mathematician, L.C. Young, remarked at 

length on this oversight in his excellent book, Lectures on the Calculus of Variations and 

Optimal Control Theory [21]. It is rewarding to see how he puts things into perspective: 

 
In the Middle Ages, an important part was played by the jester: a little joke that 

seemed so harmless could, as its real meaning began to sink in, topple kingdoms. 

It is just such little jokes that play havoc today with a mathematical theory: we 

call them paradoxes. 

 

Perron's paradox runs as follows: “Let N be the largest positive integer. Then 

for N 1 we have N 
2 
 N contrary to the definition of  N as largest. Therefore 
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N 1. ” 
 

The implications of this paradox are devastating. In seeking the solution to a 

problem, we can no longer assume that this solution exists. Yet this assumption 
has been made from time immemorial, right back in the beginnings of elementary 

algebra, where problems are solved starting off with the phrase: “Let x be the 

desired quantity.” 

 

In the calculus of variations, the Euler equation and the transversality conditions 

are among the so-called necessary conditions. They are derived by exactly the 

same pattern of argument as in Perron’s paradox; they assume the existence of a 

solution. This basic assumption is made explicitly, and it is then used to  

calculate the solutions whose existence was postulated. In the class of problems 

in which the basic assumption is valid, there is nothing wrong with doing this. 

But what precisely is this class of problems? How do we know that a particular 

problem belongs to this class? The so-called necessary conditions do not answer 

this. Therefore a “solution” derived by necessary conditions only is simply no 

valid solution atall. 

 

It is strange that so elementary a point of logic should have passed unnoticed for 

so long! The first to criticize the Euler-Lagrange method was  Weierstrass, 

almost a century later. Even Riemann made the same unjustified assumption in 

his famous Dirichletprinciple... 

 

The main trouble is that, as Perron’s paradox shows, the fact that a “solution” has 

actually been calculated in no way disposes of the logical objection to the 

originalassumption. 

 

A reader may here interpose that, in practice, surely this is not serious and would 

lead no half competent person to false results; was not Euler at times logically 

incorrect by today’s standards, but nonetheless correct in his actual conclusions? 

Do not the necessary corrections amount to no more than a sprinkling of 

definitions, which his insight perhaps took into account, without explicit 

formulation? 

 

Actually, this legend of infallibility applies neither to the greatest mathematicians 

nor to competent or half competent persons, and the young candidate with an 

error in his thesis does not disgrace his calling... Newton formulated a variational 

problem of a solid of revolution of least resistance, in which the law of resistance 

assumed is physically absurd and ensures that the problem has no solution – the 

more jagged the profile, the less the assumed resistance – and this is close to 

Perron’s paradox. If this had been even approximately correct, after removing 

absurdities, there would be no need today for costly wind tunnel experiments. 

Lagrange made many mistakes. Cauchy made one tragic error of judgment in 

rejecting Galois’s work. The list is long.  Greatness is not measured negatively, 

by absence of error, but by methods and concepts which guide further 

generations[21]. 

 

 

Twentieth Century Developments 

 

With the calculus of variations on a relatively firm foothold, aided by the rigourous work 
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of the school of Weierstrass, things were set for the theory to develop even further. In his 

famous turn- of-the-century address to the International Congress of Mathematicians in 

Paris, David Hilbert (1862-1943) made mention of the calculus of variations on several 

occasions when discussing other problems. In addition, his twenty-third problem was a 

call for the further elucidation of the theory: 

 
So far, I have generally mentioned problems as definite and special as possible, 

in the opinion that it is just such definite and special problems that attract us the 

most and from which the most lasting influence is often exerted upon science. 

Nevertheless, I should like to close with a general problem, namely with the 

indication of a branch of mathematics repeatedly mentioned in this lecture— 

which, in spite of the considerable advancement lately given it by Weierstrass, 

does not receive the general appreciation which, in my opinion, is its due—I 

mean the calculus ofvariations. 

 

In the next few years, Hilbert and his associates continued where Weierstrass left off, 

developing many new results and setting the stage for the next leap forward. 

 

Morse Theory 

 

Marston Morse (1892-1977) turned his eye to the global picture and developed the 

calculus of variation in the large, with applications to equilibrium problems in 

mathematical physics. We now call the field Morse theory. In a paper published in 1925 

entitled Relations between the critical points of a real function of n independent variables, 

Morse proved some important new results that had a big effect on global analysis, which 

is the study of ordinary and partial differential equations from a topological point of view. 

Much of his work depended on the results obtained by Hilbert and company[15]. 

 

Optimal Control Theory 

 

Another new field developed in the twentieth century from the roots of the calculus of 

variations is optimal control theory. A generalization of the calculus of variations, this 

theory is able to tackle problems of even greater generality and abstraction. New 

mathematical tools were developed by chiefly Pontryagin, Rockafellar, and Clarke that, 

among other things, enabled nonlinear and nonsmooth functionals to be  optimized. 

While this may sound like a mathematical abstraction, in reality there are many physical 

problems that can only be solved in such a manner. Two examples which come from the 

engineering world are the problem of landing a spacecraft as softly as possible with the 

minimum expenditure of fuel and the construction an ideal column [9]. 

 

Minimal Surfaces 

 

The minimal surfaces discovered by Euler have also played a substantial role in twentieth 

century mathematics, during which time two Fields Medals were awarded for work 

related to the subject. In 1936, Jesse Douglas won a Fields Medal for his solution to 

Plateau’s problem and in 1974, Enrico Bombieri shared a Fields Medal for his work on 

higher dimensional minimal surfaces. It is becoming apparent that minimal surfaces are 

found throughout nature. Examples are soap films, grain boundaries in metals, 

microscopic sea animals (called radiolarians), and the spreading and sorting of embryonic 
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tissues and cells. In addition, minimal surfaces have proved popular in design, through 

the work of the German architect Frei Otto, as well as in art, exemplified in the works of 

J.C.C. Nitsche [1]. 

 

Physics 

 

We have already seen the rich interplay between the mathematical methods used in the 

calculus of variations and developments in understanding the natural laws of our universe. 

Recall the least time principles of Fermat, Maupertuis, Euler, Lagrange, and Hamilton  

and their effects on the history of optics and mechanics. The success of these variational 

methods in solving physical problems is not surprising [9]. As Yourgrau  and  

Mandelstam pointout: 

 
Arguments involving the principle of least action have excited the imagination of 

physicists for diverse reasons. Above all, its comprehensiveness has appealed, in 

various degrees, to prominent investigators, since a wide range of phenomena  

can be encompassed by laws differing in detail yet structurally identical. It  

seems inevitable that some theorists would elevate these laws to the status of a 

single, universal canon, and regard the individual theorems as mere instances 

thereof. It further constitutes an essential characteristic of action principles that 

they describe the change of a system in such a manner as to include its states 

during a definite time interval, instead of determining the changes which take 

place in an infinitesimal element of time, as do most differential equations of 

physics. On this account, variational conditions are often termed “integral” 

principles as opposed to the usual “differential” principles. By enforcing 

seemingly logical conclusions upon arguments of this type, it has been claimed 

that the motion of the system during the whole of the time interval is 

predetermined at the beginning, and thus teleological reflections have intruded 

into the subject matter. To illustrate this attitude: if a particle moves from one 

point to another, it must, so to speak, ‘consider’ all the possible paths between  

the two points and ‘select’ that which satisfies the action condition[20]. 

 

 

In 1948, motivated by a suggestion by P.A.M. Dirac, the American physicist Richard 

Feynman (1918-1988) developed a completelynew approach to quantum mechanics, based 

on variational methods. Although not mathematically well-defined, the Feynman path 

integral was what he called a “summation over histories” of the path of a particle. Despite 

the fact that the original paper was rejected by one journal for being nothing new, 

Feynman’s original approach was ideally suited to extending quantum theory to a more 

general framework, incorporating relativistic effects [10]. 

 

It did not take long for the mathematicians to come along and tidy up everything. Mark 

Kac showed that Feyman’s integral can be thought of as a special case of the Wiener 

integral, developed by Norbert Wiener in the 1920s. With a rigourous mathematical 

underpinning, physicists were then able to apply the new variational techniques to a host 

of all quantum and statistical phenomena. Today, these methods are employed in the 

monumental task of developing the so-called Grand Unified Theory. 

 

As the field evolved from our search to understand the inner workings of Nature, perhaps 

it is fitting to end this survey of the history of the calculus of variations with a quote from 
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someone still actively involved in this search. When asked about the role of the calculus 

of variations in modern physics, Maxim Pospelov, a theoretical physicist specializing in 

supersymmetry, had this to say: 

 
The  most  notable  change  that  the   20th   century   brought   to   physics   is 

the transition from a deterministic classical mechanics where the variation of 

action leads to the equations of motion and single trajectory when the boundary 

conditions are fixed to quantum mechanics that allows multiple trajectories and 

determines the probability for a certain trajectory. The functional integral 

approach to quantum mechanics and quantum field theory is the modern 

language that everybody uses. All, absolutely all, physical processes in quantum 

field theory can be studied as a variation of the vacuum-vacuum transition 

amplitude in the presence of external sources over these sources. 

 

Variational   methods   are   often   used   in   particular   calculations   when,    

for example, one needs to find a complicated wave function when the exact 

solution to the Schrödinger equation is not possible. I know that the variational 

approach to the helium atom yields a very precise determination of its energy 

levels and ionization threshold [7]. 
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