
Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

18054 www.ijariie.com 2242

A Hypothetical Model of Data Structures and

Algorithms in the View of Modern Concurrent

Environment

Shivshankar Kumar1, Debjana De Biswas2, Anirban Bhar3, Suchismita Maiti4

1,2
 B. Tech student, Department of Information Technology, Narula Institute of Technology, Kolkata,

India.
3
 Assistant Professor, Department of Information Technology, Narula Institute of Technology, Kolkata,

India.
4
 Associate Professor, Department of Information Technology, Narula Institute of Technology, Kolkata,

India.

ABSTRACT

Early computer scientists agreed on a straightforward standard model of computation and a fundamental canon of

all-purpose algorithms and data structures that complemented it. Analysis of Data Structures and Algorithms has

typically been theoretical and mathematical that limits the scope and scale of undertaking concepts. Concurrent

data structure algorithms have drawn more interest recently as multi-core CPUs have proliferated. Concurrent data

structures are substantially more challenging to design and validate as proper than their sequential equivalents due

to a number of shared-memory multiprocessor characteristics. Software engineers use novel models of computation

and real-world constraints to create efficient algorithms and data structures. Concurrency is the main cause of the

new challenge in the distributed system. The creation of sophisticated algorithms with broad applicability is

encouraged by these limits.

Keywords: Concurrent data structure, Complexity, Shared memory, Real-time algorithms, Distributed system.

1. INTRODUCTION

Early computer scientists agreed on a straightforward standard model of computation and a fundamental canon of

all-purpose algorithms and data structures [1],[2]. A specific method of storing and organizing data such that it can

be accessed by numerous computing threads (or processes) on a computer is known as a concurrent data structure.

The practice of concurrent programming has undergone substantial modifications as a result of the widespread use

of commercial shared-memory multiprocessor systems. The traditional computing model has a single processor that

executes one instruction at a time, a large amount of memory that is uniformly accessible with minimal lat ency,

easily accessible persistent storage with significant latency, input and output that is insensitive to content or context

and orders of magnitude slower, resources and connections that do not change, and little concern for energy use or

component failure, either intermittent or permanent. The practice of concurrent programming has undergone

substantial modifications as a result of the widespread use of commercial shared -memory multiprocessor systems.

These devices will inevitably become more prevalent as low-cost chip multithreading (CMT) becomes more

popular. Shared-memory multiprocessors are computer systems that run several threads of computation

simultaneously. These threads interact and synchronize using shared memory data structures. It is much more

difficult to design and ensure the accuracy of concurrent data structures than it is for their sequential equivalents.

The difficulty of concurrency is made more complex by the asynchronous nature of threads, which are vulnerable to

page faults, interruptions, and other problems. Multithreaded programs require synchronization to ensure thread-

safety by coordinating the concurrent accesses of the threads in order to manage the complexity of concurrent

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

18054 www.ijariie.com 2243

programming. To take use of the parallel processing capabilities of modern architectures, numerous operations must

be let to go simultaneously and finish without interruption.

2. PREVIOUS WORK

Lists, quicksort, trees, the Boyer-Moore string search, hash tables, and other algorithms are examples of canonica l

data structures and algorithms. Even before that, Knuth started what he meant to be a comprehensive encyclopedia

of computers [3]. There haven't been any new and improved sort procedures that are also broadly applicable, despite

the editors of the Dictionary of Algorithms and Data Structures receiving them frequently [4]. The skip list,

developed in 1989, is the newest all-purpose data structure. Specialized fields like graphics, distributed systems, user

interaction, cyber-physical systems, and artificial intelligence are still under development [5]. General textbooks

follow the same model and cover the same material, with the possible exception of quantum computing methods.

Memory blocks can only be deleted up to 100,000 times before there are too many errors [6]. The entire memory

block is then rendered useless. Many flash memory subsystems employ sophisticated algorithms to distribute writes

across memory in order to increase their usable life while preserving the abstraction of permanent memory that is

insensitive to write locations. This is frequently done using log-structured or journaling file systems, whose write

patterns closely resemble flash memory patterns [7]. Utilizing data structures designed specifically for flash storage,

like [8] or [9], may allow the software developer to achieve additional efficiency. Consideration of the device's

features can increase solid state disc responsiveness by 44% [6].

Similar challenges and opportunities are brought about by multicore machines, which enable parallelism on every

desktop, distributed computing, which allows for the quick use of hundreds of machines, and cloud computing,

which makes extra processing always available for a fee but requires some time to request and provision additional

resources. Furthermore, applications that consider input as a stream of values to be processed rather than a static set

of data make the maximum use of micropower and ubiquitous sensors. The relevance of power and thermal

awareness in computing is rising in both small mobile devices and massive server systems. Today, despite speed-of-

light delays, we want computer systems dispersed throughout the entire planet to work as a single , cohesive unit,

which frequently necessitates careful caching [10].

3. DATA STRUCTURES

Many alternative structures can be used to arrange data. A "data structure" is a logical or mathematical

representation of a specific data organization. The data must be organized using an effective data model. Two

factors determine the specific data model to use. The structure must be both complex enough to reflect the links

between data in the real world and simple enough to allow for efficient data processing when necessary. The choice

of a particular data s tructure depends mainly on how frequently certain operations are carried out in a given

circumstance. Traversing, searching, inserting, removing, and a few unique operations like merging and sorting are

the most frequently used operations on data structures. Without using data structures in their algorithms, the

aforementioned action increases in time complexity, introduces numerous errors and flaws, and leaves the process

with numerous unresolved issues. This demonstrates a negative impact on the system's performance. The creation of

effective algorithms is the response to all of these issues. By reducing the complexity of their algorithms, data

structures that are appropriate for the scenario are adopted, which results in effective data administration and

maintenance and making efficient use of system resources. The operational tasks of practically every program or

software system use data structures. Data structures, as opposed to algorithms, are sometimes emphasized in

programming languages as the primary organizing principle in software development. We feel it is important to

clearly categorize the different categories of data structures before beginning the overview of data structures and

their applications. Primitive and non-primitive data structures are included in the standard classification of data

structures [11]. The categories of data structures and their subcategories are depicted in the following Figure 1.

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

18054 www.ijariie.com 2244

Fig -1: The data mining tasks

As was indicated in the section above, a data structure is a specific format for organizing and storing data. The array,

the file, the record, the table, the tree, and other common data structure types are only a few examples. Any data

structure is made to arrange data in a way that serves a specific purpose and can be accessed and used in the right

ways. A data structure may be chosen or created in computer programming to store data in order to process it using

different methods. The only data structures that are directly modified by machine instructions are primitive ones.

Integers, real data, logical data, character data, and pointer data are examples of primitive data structures. The

operating system defines storage structures for various sorts of data with help from primitive data structures.

Comparatively, data types differ from one another in terms of their storage structures, as do the operating systems

and software platforms [12].

Non-primitive data structures are those that are manually created using algorithms to meet any ap plication

requirements rather than being deployed directly by machine level instructions. Linear data structures and non-linear

data structures are the next categories for non-primitive data structures. A concept known as the principle of

alignment is used to define the relationship between linear and non-linear data structures. Whether data is stored

next to each other or not is determined by the alignment principle. Lists, queues, stacks, unions, files, and other

linear data structures are just a few examples.

It is possible to create linear data structures in memory as a continuous arrangement of data elements. It can be built

using the array data type. The relationship of adjacency is preserved between the Data elements in linear data

structures.

The most common types of non-linear data structures are trees and graphs. A non-linear data structure can be created

by joining together a number of randomly dispersed sets of data items with the aid of a unique pointer. The

relationship of adjacency between the Data elements is not maintained in a non-linear data structure.

Dictionary, skip list, hash table, heap, leftist tree, winner tree, loser tree, balanced search tree such AVL tree, Red -

black tree, splay tree, B-tree, etc. are some examples of the more complex data structures.

The following is a discussion of some of the significant applications of multiple data structures in the field of

computer science.

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

18054 www.ijariie.com 2245

3.1 Arrays

Arrays are homogeneous, linear data structures that order data objects in a continuous block of memory in a

sequential order [13]. A number of identical pieces of information can be stored in an array. Arrays are thought of as

the foundation of data structures. All of the fundamental and sophis ticated data structures may be implemented using

arrays, which oftentimes makes code simpler. Arrays can occasionally even complete jobs that are difficult to

complete using other techniques. In addition to its repetitive and conditional processing capabilities, an array can be

quite powerful and have a wide range of uses.
Applications:

The array is comparable to a universal data structure that can be used to generate any other data structure.

 The arrays are particularly effective for searching and finding a specific target value, such as the maximum,

minimum, mean, median, average, or count from a collection of data objects.

 It is simpler to perform operations like sorting, combining, traversing, and retrievals when things are arranged at

evenly spaced and sequential addresses in computer memory.

 An indexable variable can be specified in a computer language using the array data type.

 Matrix-based numerical representations are simple to store in a computer's memory, making it possible to solve a

variety of challenging mathematical problems and perform image processing transformations.

3.2 Stacks

The stack data structure, which receives values in last-in, first-out order, is homogeneous, linear, and recursive. As a

result, they are known as LIFO lists. The PUSH operation is represented by adding an element to the stack, and the

POP operation is represented by removing an element from the stack. A stack is a data structure with restricted

access, allowing only additions and deletions at the top. Consider a stack of books; you can only remove the top

book, and you can also place a new book on top of the stack as an analogy. Reversing a word is the simplest use of a

stack. You add letters one at a time to a particular word, then remove them from the stack.
Applications:

 The compiler and operating system can keep local variables used inside a function block on a stack, where they

can be removed once control leaves the function block.

 In text editors, a stack can be used as "undo" mechanism; this function was made possible by storing all text

changes in a stack.

 Stacks are in handy when you need to obtain the most recent data piece in a list of items, a process known as

"backtracking."

 Parsing is a crucial area in which stacks are used.

 It can be used to execute recursive functions and handle function calls. The final executed function will return

the result by popping the stack after pushing the function's return values and addresses into memory.

 Internal stacks are used in language processing to generate room for parameters and local variables. Stack is used

to implement the syntax check for matching braces in the compiler.

3.3 Queues

Queue is a linear and homogenous data structure in which insertions and deletions are done at different ends in First

in first out order (FIFO). Hence, they are called FIFO lists [14]. In queue all the elements are inserted at rear end

whereas all deletions are performed at another end called as front end. General applications of queues include

transport, and operations research where various entities such as data, objects, persons, or events are stored and held

to be processed later. In these contexts, the queue performs the function of a buffer.
Applications:

 Queues are frequently used in programs, where they are implemented as abstract data structures, as data

structures with access functions, or as classes in object-oriented programming languages. Linked lists and

circular buffers are common implementations.

 In the operating system, interrupts can be stored in queues.

 An application program makes use of it to store incoming data.

 Operating systems execute synchronization via queues.

 Both CPU job scheduling and disc scheduling require queues.

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

18054 www.ijariie.com 2246

This data structure is typically used to simulate a variety of operating system capabilities, such as multiprogramming

platform systems and various scheduling methods that employ queues. Queue data structures are used by printer

server routines and other software programs.
Example:

Queues are utilized to accomplish the round robin technique. It serves the time-sharing system specifically. These

algorithms are implemented using the circular queue.

3.4 Linked Lists

A linked list is a type of linear data structure made up of a collection of nodes, each of which has information and a

link to the node after it in the list. A linked list arranges data on a storage device based on th e logical, rather than the

physical, order of the data.

The most practical linear data structure is the linked list, which finds utility in a wide range of system operations.

Applications:

 Linked lists are employed in dynamic memory management operations like run -time memory allocation and

release.

 To execute operations like addition and multiplication with polynomials, a linear link list can be used to represent

and manage a polynomial.

 In Symbol Tables, linked lists are used to balance parentheses and express sparse mat rices.

 Implementing a linked list of file names, undo functionality in Photoshop, would be a relatively excellent choice.

 Using the browser's cache, it is possible to implement a linked list of URLs by pressing the BACK button.

 Stacks, hash tables, and binary trees are examples of data structures that can be built using doubly linked lists.

 Unbounded memory in a system is readily managed using a linked list.

Creating hash tables for collision detection across communication channels, structuring binary trees, construct ing

stacks and queues in programming, and maintaining relational databases are some typical uses of linked lists.

3.5 Trees

For grouping data objects according to keys, a tree data structure is a potent tool. It can also be used to arrange

various data elements according to hierarchical relationships. When data is keyed or has internal structure that

enables one piece to be associated to, or "preserved within," another, tree structures are a great alternative to arrays.

Applications:

 The phrase structure of sentences, which is essential for language processing tools, is represented by trees. By

examining the program's words and attempting to construct the program's parse tree, the Java compiler examines

the grammatical structures of the Java program. When the parse tree is correctly built, the Java compiler uses it as

a guide to create the byte code that can be found in the program's class file.

 In many search applications, such as the maps and set objects of various language libraries, where data is

constantly added to and removed, trees are employed.

 File folders serve as the nodes of a tree that an operating system maintains on a disc. The tree structure is

advantageous since it allows for the simple creation and deletion of folders and files.

 Major compilers can validate syntax using tree data structures, and they can also be used to implement sorted

dictionaries.

 The usage of trees is widespread in internet protocols and has many uses in computer networking. For storing

router tables, trees can be utilized as every high-bandwidth router.

 Trees can be used for quick traversals and searching of directory structures in the system. Trees can be searched

using Dijkstra's algorithm to discover nodes that are closest to the router for the shortest paths.

Trees come in a variety of types and variations, and they can be used in a number of different fields.

3.6 Graphs

A graph is a type of data structure made up of a limited number of ordered pairings of objects known as nodes or

vertices and edges or arcs.

A graph can either be directed from one vertex to another or be undirected. Graphs can be used to represent and

resolve a variety of real-world computer science issues. Computer science makes extensive use of graph theoretical

concepts [15]. Graphs make it much simpler and easier to model data structures using vertices and edges to address

issues like resource allocation, scheduling, graph coloring, resource networking, database design, network

topologies, etc.

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

18054 www.ijariie.com 2247

Applications:

 A directed graph could be used to depict the link structure of a website; the web pages that are available there

make up the vertices, and a directed edge only connects page A and page B if and only if page A has a link to page

B.

 Jobs are supposed to represent the vertices of the graph, and there will be an edge between two jobs that cannot be

done simultaneously and a one-to-one relationship between viable scheduling of graphs. This notion of graph

coloring can be used to CPU task scheduling difficulties.

 Similar to this, graphs make it simple to address the problem of simultaneous job execution between a set of

processors and a set of jobs.

4. CONCURRENCY ALGORITHM IN DATA STRUCTURE

Blocking data structures and algorithms are those that synchronize the data by means of mutexes, condition

variables, and futures. The application uses library functions to pause a thread's execution while waiting for another

thread to finish its task. Such library calls are referred to as blocking calls because, until the block is removed, the

thread cannot carry on. A blocked thread will typically be totally suspended by the OS (and its time slices will be

given to another thread) until the proper action of another thread, such as unlocking a mutex, alerting a condition

variable, or making a future ready, unblocks it.

Nonblocking refers to data structures and algorithms that don't make use of blocking library functions. However, not

all of these data structures are lock-free, so let's examine the different kinds of nonblocking data structures.

4.1 Lock-free data structures

A data structure must permit concurrent access from several threads in order to be considered lock-free. A lock-free

queue might let one thread push and another pop, but it will crash if two threads attempt to push new items

simultaneously. They don't even have to be able to do the same tasks. Additionally, the other threads must be able to

finish their actions without waiting for the suspended thread if one of the threads accessing the data structure is

suspended by the scheduler mid-operation.

4.2 Wait-free data structures

A wait-free data structure is a lock-free data structure with the added feature that every thread accessing the data

structure can finish its operation in a finite number of steps, regardless of how other threads behave. Therefo re,

algorithms that may require an infinite number of retries due to conflicts with other threads are not wait-free.

Fig -2: Concurrency Algorithms

Vol-8 Issue-4 2022 IJARIIE-ISSN(O)-2395-4396

18054 www.ijariie.com 2248

5. CONCLUSION

According to concurrency management methods like blocking and non -blocking, algorithms are divided into

different categories. The latter can be lock-free, wait-free, or obstruction-free while the former is predicated on

locks. Finally, it is clear that the lock-free strategy performs better than the locking-based approach. Novel, elegant,

widely applicable algorithms and data structures may result from new computing limitations and opportunities, such

as highly parallel, cloud, and energy-aware processing. We demand a resurgence of resources and enthusiasm in the

study of fundamental algorithms and data structures. In order for programmers to appreciate the advantages and

necessity of such advancements, according to Kamp, they should be taught basic cache -aware data structures and

algorithms. More importantly, these data structures and algorithms must be as easily accessible from standard

libraries as the current "standard model" techniques. Professionals that are busy rarely take the extra time or effort to

find the best tool for the job if a suitable instrument is already available.

6. REFERENCES

[1]. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill, 1990.

[2]. G. V. Neville-Neil, “The data-structure canon,” Comm. Of ACM, vol. 53, no. 4, pp. 33–34, April 2010.

[3]. D. E. Knuth, “Artistic programming,” Current Contents, no. 34, August 1993.

[4]. Dictionary of algorithms and data structures. P. E. Black, ed. [Online]. Accessed 21 April 2020.

[5]. W. Pugh, “Concurrent maintenance of skip lists,” April1989. Tech. Report CS-TR-2222, Dept. of Computer

Science, U. Maryland.

[6]. L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel, and J. K. Wolf, “Characterizing

flash memory: Anomalies, observations, and applications,” In Proc. 42nd Ann. IEEE/ACM Int’l Symp. On

Microarchitecture (MICRO 42), pp. 24–33, New York, NY, USA, 2009.

[7]. E. Gal and S. Toledo, “Algorithms and data structures for flash memories,” ACM Computing Surveys, vol. 37,

no. 2, pp. 138–163, June 2005.

[8]. C.-H. Wu, T.-W. Kuo, and L. P. Chang, “An efficient B-tree layer implementation for flash-memory storage

systems,” ACM Trans. Embedded Computing Systems, vol. 6, no. 3, art. 19, July 2007.

[9]. N. M. M. K. Chowdhury, M. M. Akbar, and M. Kaykobad, “Disktrie: An efficient data structure using flash

memory for mobile devices,” In M. Kaykobad and M. S. Rahman, editors, Proc. First Workshop on Algorithms and

Computation (WALCOM), pp. 76–87, 2007.

[10]. Cloudflare, Network latency, in How to Make the Internet Faster for Everyone [Online]. Accessed 24 August

2020.

[11]. http://people.cis.ksu.edu/~schmidt/300s05/Lectures/Week 7b.html
[12]. http://en.wikipedia.org/wiki/Data_s tructure

[13]. Zaizai., “Advanced Array Applications in Clinical Data Manipulation”, AstraZeneca Pharmaceuticals David

Shen, WCI, Inc.

[14]. Steve First, Teresa Schudrowitz., “Arrays Made Easy: An Introduction to Arrays and Array Processing”,

Systems Seminar Consultants, Inc., Madison, WI.

[15]. S.G.Shirinivas, S.Vetrivel, Dr. N.M.Elango.,“The applications of graph theory in computer science an –

overview”, International Journal of Engineering Science and Technology, Vol. 2(9), 2010, 4610-462.

http://people.cis.ksu.edu/~schmidt/300s05/Lectures/Week%207b.html

