A Non Uniform Fault Tolerable Routing Protocol for Unequal Chain Length in Wireless Sensor Network

Prashant Kumar Mishra¹, Ankit Tripathi², and Dr Anshuj Jain³

^{1,2,3}Department of Electronics & Communication Engineering, SCOPE College of Engineering, Bhopal

Abstract— Wireless sensor networks provide a significant con- tribution to the emerging field such as ubiquitous computing and ambient intelligence. Due to the inherent property of WSN, it is most vulnerable for reliability. In literature, most of the authors concern about network longevity and ignore fault tolerance. In this dissertation, we present A Non Uniform Fault Tolerable Routing Protocol (NFTRP) Mechanism for Unequal Chain Length in Wireless Sensor Network. The major novelty of this work is that sensor nodes can send their data to alternate path during a fault. The energy efficient can be achieves using clustering protocol for routing. The subordinate for each cluster help to tolerate faults occurred in the proximity. The cluster head nodes in proximity propagate aggregated data to base station. The simulation results show that the present approach yields better performance than the existing methods. It has observed that the proposed protocol NFTRP has better energy utilization than existing EE-LEACH and FTREEP protocols. The NFTRP protocol also has better packet delivery ratio than FTEERP.

Index Terms- Energy efficiency; wireless sensor network; cluster head selection; fault tolerance.

I.INTRODUCTION

A Wireless sensor network is a complex system consists a number of small wireless sensor nodes and a base station (BS). Sensor node consists of sensor, processor, memory, RF transceiver (radio), peripherals, and power supply unit(battery) [1]. These sensor nodes are spread over an area interest and connected in an ad-hoc manner for eventdetection and collect data for various ambient conditions. The WSN has many applications like disaster management such asearthquake monitoring, tsunami warning, pipeline monitoringsystems and flood forecasting. The self-organization, rapid de-ployment and fault tolerance characteristics of wireless sensor networks make them a very promising sensing technique formilitary applications [2]. Since WSN has limited resources due to the limited size of the node, either changing or recharging batteries are not feasible. The failure of a single node canprostrate the entire system hence system become unreliable. Data reliability is most important in many critical applications but due to the environmental obstacle and failure of network connection also reduces data reliability. Hence optimized routing with reliable data dissemination can be considered as a very challenging problem in wireless sensor network.

This problem imposes many challenges to the researchers for developing energy-efficient fault tolerable protocols.

The routing protocols in sensor networks are classified into three categories: data centric protocols, location based protocols, and hierarchical protocols. This paper considers the hierarchical protocols which deal with organizing network into a two tiers. In this paper, a Non Uniform Fault Tolerable Routing Protocol (NFTRP) Mechanism for Unequal Chain Length in Wireless Sensor Network is presented which provides an energy efficientnetwork retain a long time with data dissemination reliability.

In this approach, two leaders with multi chain structure nodes are used for fault handling and data transmission. It has been observed that the present approach minimizes the missing data between cluster head and its members. It also saves a lot of energy by reducing retransmission and increase stability period of the sensor network.

This paper is organized as follows: Section II presents the related work. Section III consists the network and radio energymodel. Section IV presents the proposed NFTRP technique in detail. Section V contains simulation setup and results. Section VI concludes with future enhancement of this work.

II. RELATED WORK

A lot of research have been carried out in the area of energy- efficient and fault tolerable routing in sensor networks, which are mainly focused on enhancing the network lifetime.

Low Energy Adaptive Clustering Hierarchy (LEACH) pro- posed in [3] is the first and most popular hierarchical routing protocols designed to aggregate and disseminate data to the base station for network lifetime enhancement. LEACH ob- tains energy efficiency by partitioning the nodes into clusters. Younis [4] presents a protocol, HEED (Hybrid Energy- Efficient Distributed clustering), that periodically selects clus- ter heads according to their residual energy. The authors do not make any assumptions about the presence of infrastructure or node capabilities, other than the availability of multiple power levels in sensor nodes. However, the proposed algorithms support only for building a two-level hierarchy and lack for

multilevel hierarchies.

Karaboga et al. formulated an energy-balanced routing protocol for data gathering. Enhanced mechanisms were used to identify and eliminate the loops [5]. Dervis et al. utilized an artificial bee colony algorithm for energy-efficient clustering. The artificial bee colony algorithm was used to prolong the lifetime of the sensor nodes and the network [6]. Yuea et al. discussed the balanced cluster-based data aggregation algorithm. The sensor network was divided into rectangular grids. For each grid, the cluster head was elected to manage the nodes and balance

the load among the sensors [7].

Rout et al. introduced an adaptive data aggregation mecha- nism based on network coding. Here, the group of nodes acts as network coder nodes and the remaining nodes were used for relaying purpose. The network coder nodes were sometimes used as aggregation points based on the measure of the data correlation [8]

Bagci et al. [10] introduced a distributed fault-tolerant topol- ogy control algorithm, called the Disjoint Path Vector (DPV), for heterogeneous wireless sensor networks composed of a vast number of sensor nodes with limited energy and computing capability and several nodes with unlimited energy resources (called super-node). The DPV algorithm addresses the k- degree topology control problem where the primary objective is to assign each sensors transmission range such that each has at least k-vertex-disjoint paths to super nodes, and the total power consumption is minimum. The resulting topologies are tolerant to node failures in the worst case. Authors prove the correctness of proposed approach by showing that topologies generated by DPV are guaranteed to satisfy k-vertex super node connectivity.

Hezaveh et al. [11] proposed a Fault-Tolerant and Energy- Aware Mechanism (FTEAM), which prolongs the lifetime of WSNs. This mechanism can be applied to cluster based WSN protocols. The main idea behind the FTEAM is to identify overlapped nodes and configure the most powerful ones to the sleep mode to save their energy for the purpose of replacing a failed Cluster Head (CH) with them. FTEAM not only provides fault tolerant sensor nodes but also tackles the problem of emerging dead area in the network.

Ahmed in [12] considers a problem of connections and vulnerability to frequent node/ link failures in multi-hop wireless sensors networks. The author proposed a new fault- tolerant routing and energy-efficient protocol that modifies the conventional DSR protocol. The protocol tries to find two routing paths (if they exist) from the source to the destination node, considering the present energy levels at intermediate nodes in the path. Results show that the proposed protocol achieves better packet delivery ratio and network throughput as compared to conventional DSR.

Sharma et al. in [13], proposed an algorithm for the wireless sensor network that works on both the major issues, cluster formation based on the energy of cluster heads and fault tolerance of the wireless sensor network. It recovers the matter of cluster head failure, the sensor nodes select efficient or proper cluster head considering a function which primarily consists of residual energy of the CH, based on the distance of cluster head to base station. Algorithm works upon two critical parameters first is cluster formation, and another one is fault tolerance. In the first phase i.e. cluster formation, it also takes cares about uncovered sensor nodes or in other words, those sensor nodes which are not covered by cluster head due to some long distance issue, and it also works on the issue of cluster head failure. To tolerate the failure, it avoids reclustering or also avoids the redundant deployment of cluster heads.

Yin et al. in [14], study the fault tolerant topology de- sign problem for an Energy-harvesting Heterogeneous WSN (EHWSN). EHWSN contains a large number of energy har- vesting sensor nodes and a few resource-rich nodes (called super-node). The topology design problem aims to build a sparse time evolving topology which not only maintains the connectivity from sensor nodes to super-nodes but also can survive with k-1 node failures. This time-evolving structure can be used for deciding which subset of sensors need to be awake and assigning their transmission ranges. Authors first define the fault-tolerant topology problem in an EHWSN modeled by a space-time graph G, which aims to find a k- connected space-time graph H (a subgraph of G), such that Hs cost is minimized. After that, six heuristics which can significantly reduce the total cost of network topology while preserving the k-connectivity over time is computed.

Kshirsagar et al. in [15] addressed the problem of link failure due to the inability of the nodes in the WSN and with the aim of providing robust solutions to satisfy the QoS-based based end-to-end requirements of communication networks. In this paper, authors propose the new solution by modifying the existing extended fully distributed cluster-based routing algorithm (EFDCB). In this, the faulty nodes or nodes that are more prone to failure in every cluster of the network get identified by exchanging data and mutually testing among neighbor nodes. When nodes establish a path between source and destination, these faulty nodes get excluded in the path selection process, and more stable, less prone to failure path is formed.

Nitesh et al. in [16], proposed an energy efficient distributed algorithm for clustering, called EEFCA, which is also faulted tolerant in nature. The algorithm is based on a range of pa- rameters such as the residual energy of RNs, various distance parameters of RNs and cluster cardinality.

Peng et al. in [17], proposed three network evolution models for generating fault-tolerant and energy-efficient large- scale peer-to-peer wireless sensor networks (WSNs) based on complex networks theory. Being scale-free is one of the intrinsic features of complex networks based evolution models that generates fault-tolerant topologies. In this work, authors argue that fault-tolerant topologies are not necessarily energy efficient. The three proposed energy-aware evolution models are energy-aware common neighbors (ECN), energy-aware large degree promoted (ELDP) and energy-aware large de- gree demoted (ELDD). ECN considers neighborhood overlap, whereas ELDP and ELDD consider topological overlap for node attachment. The ELDP model promotes the establishment of links to nodes to a large degree, whereas the ELDD model denotes this strategy.

Azharuddin et al. [51] proposed a Particle Swarm Optimization (PSO)-based routing and clustering algorithm for wireless sensor networks, where the routing algorithm creates a balance between energy efficiency and energy balancing. The clustering algorithm is responsible for the CH and normal sensing node's energy consumption. The proposed algorithms are also sophisticated enough to handle the failure of cluster heads.

Nigam, G.K et al. [57] have pointed out at some of the drawbacks of the LEACH protocol, such as the unnecessary cluster head election after each round, which results in significant energy depletion, discarding the remaining energy of the sensors, non uniformity of number of cluster heads, etc. The paper proposes an algorithm, namely ESO-LEACH, for addressing some of these issues. It makes use of metaheuristic particles warm enhancement for the initial clustering of the nodes, introduces the concept of advanced nodes and also takes the residual energy of the nodes into consideration. An enhanced set of rules and a fitness function are also defined for the purpose of cluster head selection. The algorithm demonstrates enhanced network lifetime as compared to conventional LEACHx.

We studied various routing and fault tolerance algorithms the parameter authors took for cluster heads selection are energy, density, distance and location of sensor nodes. There are few algorithms which use one of the parameters for cluster head selection. They do not take many parameters for cluster head selection. The fault tolerance algorithm considers the faulty node and connections between node to node,

leader to the base station, leader to another leader. We need such approaches which optimize the path between the node to the head so that reliability of data dissemination increases.

III. NETWORK AND RADIO ENERGY MODEL

In this section assumption about the networks and parameter used in energy, consumption model is described.

A. Network Model

The following assumptions on the NFTRP are made.

- Sensor nodes and base station are static.
- The base station does not limit by energy.
- Sensor nodes do not become aware of their geographic location.
- Sensor nodes know the relative position of the base station in the field.
- The distributions of sensor nodes are random over the sensing area.
- The sensor nodes are densely deployed in the sensing area. This dense deployment of sensor network achieving Quality of Service.
- Sensor nodes are homogeneous in energy level.
- Sensor nodes can measure the current energy level.

B. Radio Energy Model

According to the radio energy dissipation model [18], to attain an acceptable Signal-to-Noise Ratio (SNR) for transmit- ting an 1-bit message over distance d, the energy consumption by the radio is given by:

 $IE_{elec}N_{mem}$ is the power that N_{mem} cluster member con-sume when each of them send data to the cluster head, and $IE_{DA}N_{mem}$ is the power consume by cluster head for data aggregation, when it receives *I* length data from its cluster member.

IV. METHODOLOGY

In the NFTRP, routing process accomplish in 2 stages, it requires 2 Tmax (Tmax is the time require for clustering). In the first step, sensor nodes select a leader called cluster head according to the probabilistic threshold. At the end of the first step, all the cluster heads are selected, and formation of the cluster is accomplished. In the second step, sub-cluster head (chain leader) selection process starts where all the cluster heads pick a new subordinate from remaining energy and region density. After the completion of second stage cluster head also receive data from cluster members and verify the reception of data to chain leader, after verification, cluster head sends aggregated data to the base station. This extends the time interval before the death of first node and preserve reliability of network. It is very essential for many applications where reliability about feedback needed.

A. Cluster head selection

The first stage includes cluster head selection as well cluster formation process. In the cluster head selection procedure, each sensor node chooses a random number between 0 and 1 separately. If this number is lower than the calculated threshold T (i) for node i, then the sensor node i become a cluster head.

B. Cluster formation

In the process of cluster formation, each cluster headsbroadcast a join message within the sensing field. On reception Thus, the energy dissipated in the cluster head node during

a round is given by the following formula:

$$E_{CH} = IE_{elec}N_{mem} + IE_{DA}(N_{mem} + 1)$$

of join message each non-cluster head sensor node decides to join the cluster head, if more than one join messages are received then sensor node join nearest cluster head. After

a constant time, interval cluster head received join requestmessages from non-cluster head sensor nodes. It creates a

Where N_{mem} is the number of members in a cluster, d_{CH-BS} is the distance between the cluster head and base station,

TDMA schedule for data transmission within the cluster andsends to its cluster members.

Parameter	
Network size	$(300 \times 300 m^2)$
Number of sensor node (<i>n</i>)	100- 500
Base station position	قو (300 m, 300 m)
Initial energy of node	2 0.5J
Transmitter/Receiver electronics E_{elec}	50 nj/bit
Data aggregation (E_{DA})	5 nj/bit/report
Reference distance (d_0)	87 m
Transmit amplifier $\epsilon_{\rm fs}$	10 <i>pJ/bit/m</i> ²
Transmit amplifier ϵ_{mp}	$0.0013 pJ/bit/m^4$
Message size (<i>l</i>)	4000 bits

TABLE I Simulation Parameters

C. Chain formation

The cluster head node sends HELLO packet to all the nodes in the zone to get positional information of all the nodes. It determines the farthest nodes by comparing the distances of all the nodes. The cluster head node sends a message to the farthest nodes to form chain. Therefore, farthest nodes considered as end node of chain. It finds nearest node and connects to it. For connection each node sends a connection request to the nearest node. On reception of join request it connects to the request node as parent node if it is not the part of other chain. If it receive more than one join request at the same time then it will connect to the nearest node. Each node repeat these steps until all nodes are not joined to the one of the chain.

D. Determine leader of chain

In this phase, each chain chooses a leader that collect data of all the nodes of chain. It is selected on the basis of weight W. The weight W for each node i is calculated as

$$W_{2} = \frac{I_{2}}{Dist(CH, b)}$$

E. Data verification and data dissemination

After the chains leader selection, each sensor node in the cluster sends sense data to cluster head through chains leader. Periodically. Chain leader send information about received packet to the respective cluster head. Cluster head verifies sub-CH(chains leader) information to own received data. The missing data can be recovered by merging these data. After verification, cluster head sends aggregated data to base station.

www.ijariie.com

V. RESULTS AND PERFORMANCE ANALYSIS

In this section the performance of the proposed NFTRP technique is evaluated and compared with the existing distributed cluster head scheduling EE-LEACH [9] and FTREEP [12] Protocol. There are 100 sensor nodes deployed in the 300 *300 m2 area.

The efficiency of the proposed system is evaluated based on the following criteria: average energy utilization and packet delivery ratio. Table I presents the parameters used in the simulation.

Fig. 1 shows that the number of nodes alive over the rounds. It is observed that the NFTRP uniformly distribute the energy uses which increases stability period of the network. It is also seen from Fig 1 that the network lifetime of NFTRP is about 2000 rounds.

Here the analysis is made on cluster formation and fault recovery. Fig. 2(a) shows that the number of clusters formed in a round up to 21 clusters. Fig. 2(b) shows that the faults

recovered using NFTRP is up to 100. Energy required for network operation is also almost constant over time. The present NFTRP has less energy consumption than EE-LEACH protocol [9] because of better faults tolerance. Fig. 3 shows the simulation result for n = 100, initial energy of a node is 2J, base station placed at (110m, 45m) and packet length is 4000 bits for this simulation [9].

Fig. 3. Energy consumption over the time

Fig. 4 shows the packet delivery ratio decreases with increasing time. The proposed approach has better packet delivery ratio than the EE-LEACH protocol because FTEER recovered missing data. The NFTRP ensures that the data reliability using the sub-cluster head. In this 50 sensor nodes are distributed in 2000 2000 m2 area of sensing field arumugam2015ee.

Fig. 5 shows the packet delivery ratio decreases with increasing time. The present approach has better packet delivery ratio than the FTREEP [12] protocol because NFTRP has better fault tolerance.

Fig. 5. Faulty connection vs. packet delivery ratio

VI. CONCLUSION

In this paper, a new energy efficient fault tolerable routing protocol has been proposed which is based on clustering approach. It improves the stability period of the sensor network with packet delivery ratio. A subordinate of the cluster has been chosen for data recovery which is based on the remaining energy of the sensor node and node density. Simulation results show that NFTRP approach has better energy utilization and packet delivery ratio than existing technique EE-LEACH. It is also found that NFTRP recovered packet up to 100 in the faulty network than FTREEP method. In future, we extend NFTRP protocol for inter-cluster communication with different parameters for clustering.

REFERENCES

- [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," *Communications magazine, IEEE*, vol. 40, no. 8, pp. 102–114, 2002.
- [2] Z. Zhang, M. Ma, and Y. Yang, "Energy-efficient multihop polling in clusters of two-layered heterogeneous sensor networks," *Computers, IEEE Transactions on*, vol. 57, no. 2, pp. 231–245, 2008.
- [3] M. Handy, M. Haase, and D. Timmermann, "Low energy adaptive clus- tering hierarchy with deterministic cluster-head selection," in *Mobile and Wireless Communications Network, 2002. 4th International Workshop on*, pp. 368–372, IEEE,

2002.

- [4] O. Younis and S. Fahmy, "Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks," *Mobile Computing, IEEE Transactions on*, vol. 3, no. 4, pp. 366–379, 2004.
- [5] F. Ren, J. Zhang, T. He, C. Lin, and S. K. Ren, "Ebrp: energy-balanced routing protocol for data gathering in wireless sensor networks," *Par- allel and Distributed Systems, IEEE Transactions on*, vol. 22, no. 12,pp. 2108–2125, 2011.
- [6] D. Karaboga, S. Okdem, and C. Ozturk, "Cluster based wireless sensor network routing using artificial bee colony algorithm," *Wireless Net- works*, vol. 18, no. 7, pp. 847–860, 2012.
- [7] J. Yuea, W. Zhang, W. Xiao, D. Tang, and J. Tang, "Energy efficient and balanced cluster-based data aggregation algorithm for wireless sensor networks," *Procedia Engineering*, vol. 29, pp. 2009–2015, 2012.
- [8] R. R. Rout and S. K. Ghosh, "Adaptive data aggregation and energy efficiency using network coding in a clustered wireless sensor network: an analytical approach," *Computer Communications*, vol. 40, pp. 65–75,2014.
- [9] G. S. Arumugam and T. Ponnuchamy, "Ee-leach: development of energy-efficient leach protocol for data gathering in wsn," *EURASIP Journal on Wireless Communications and Networking*, vol. 2015, no. 1, pp. 1–9, 2015.
- [10] H. Bagci, I. Korpeoglu, and A. Yazıcı, "A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks," *IEEE Transactions on Parallel and Distributed Systems*, vol. 26, no. 4, pp. 914–923, 2015.
- [11] M. Hezaveh, Z. Shirmohammdi, N. Rohbani, and S. G. Miremadi, "A fault-tolerant and energy-aware mechanism for cluster-based routingalgorithm of wsns," in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 659–664, IEEE, 2015.
- [12] R. E. Ahmed, "A fault-tolerant, energy-efficient routing protocol for wireless sensor networks," in *Information and Communication Technol-ogy Research (ICTRC), 2015 International Conference on*, pp. 175–178, IEEE, 2015.
- [13] S.Prasanna and Srinivasa Rao "An Overview of Wireless Sensor Networks Applications and Security" International Journal of Soft Computing and Engineering (IJSCE) Volume-2, Issue-2, May 2012.
- [14] Choi, Jinchul, and Chaewoo Lee. "Energy consumption and lifetime analysis in clustered multi-hop wireless sensor networks using the probabilistic cluster-head selection method." EURASIP Journal on Wireless Communications and Networking 2011, no. 1 (2011): 1-13.
- [15] Mehrani and Mohammad, "FEED: Fault tolerant, energy efficient, distributed Clustering for WSN." Advanced Communication Technology (ICACT), 2010 The 12th International Conference on. Vol. 1. IEEE, 2010.
- [16] Kim, Kyung Tae, Han Ku Yoo, Byung Ha Son, and Hee Yong Youn. "An energy efficient clustering scheme for selforganizing distributed wireless sensor networks." In Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on, pp. 1468-1473. IEEE, 2010.
- [17] Noritaka Shigei, Hiromi Miyajima, Hiroki Morishita and Michiharu Maeda, "Centralized and distributed clustering methods for energy efficient wireless sensor networks", in Proceedings of the International Multiconference of Engineers and Computer Scientists (IMECS 2009), Volume I, March 2009.
- [18] Saeidmanesh, Mehdi, Mojtaba Hajimohammadi, and Ali Movaghar. "Energy and Distance Based Clustering: An Energy Efficient Clustering Method for Wireless Sensor Networks." In 2009.
- [19] A.A.Abbasi and M.Younis, "A survey on clustering algorithms for wireless sensor networks", Elsevier Journal of Computer Communications 30(2007) 2826-2841.
- [20] S. M. Guru, M. Steinbrecher, S. Halgamuge, and R. Kruse, "Multiple Cluster Merging and Multihop Transmission", LNCS 4459: AGPC, Springer, pp. 89-99, 2007.
- [21] Qing, Li, Qingxin Zhu, and Mingwen Wang. "Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks." Computer communications 29.12 (2006): 2230-2237.
- [22] M. Kochhal, L. Schwiebert, and S. Gupta, "Self-organizing of wireless sensor networks," in Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to- Peer Networks, J. Wu, Ed. Auerbach Publications, pp. 369– 392, 2006.
- [23] P.Ding, J.Holliday and A.Celik, "Distributed energy efficient hierarchical clustering for wireless sensor networks", in Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS'05), Marina Del Rey, CA, June 2005.