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ABSTRACT;- An elementary contraction of a graph G is a transformation of G to a new 

graph G1, such that two adjacent vertices u and υ of G are replaced by a new 

vertex w in G1 and w is adjacent in G1 to all vertices to which either u or υ is adjacent in G. A 

graph G* is said to be a contraction of G if G* can be obtained from G by a sequence of 

elementary contractions. The following is another characterization of a planar graph due to the 

German mathematician K. Wagner in 1937. A graph is planar if and only if it is not contractible 

to K5 or K3,3. A graph G is said to be planar if it can be represented on a plane in such a fashion 

that the vertices are all distinct points, the edges are simple curves, and no two edges meet one 

another except at their terminals. For example, K4, the complete graph on four vertices, is planar, 

as Figure 4A shows. Many of the others, however, require proofs of unusual ingenuity and depth 

even in the two-dimensional case. Sometimes a plane solution may be readily extendible to 

higher dimensions, but sometimes just the opposite is true, and a three-dimensional or n-

dimensional problem may be entirely different from its two-dimensional counterpart. Each new 

problem must be attacked individually. The continuing charm and challenge of the subject are at 

least in part due to the relative simplicity of the statements coupled with the elusive nature of 

their solutions. In 1893 the British mathematician J.J. Sylvester posed the question: If a finite 

set S of points in a plane has the property that each line determined by two points of S meets at 

least one other point of S, must all points of S be on one line? Sylvester never found a 

satisfactory solution to the problem, and the first (affirmative) solutions were published a half 

century later. Since then, Sylvester’s problem has inspired many investigations and led to many 

other questions, both in the plane and in higher dimensions. 

KEYWORDS;-PLANAR GRAPHS REDUCIBILITY, PREGEL RIVER,  

PACKING AND COVERING, PRISM AND TRUNCATED PYRAMID. 
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INTRODUCTION 

Planar graphs 

 

Two homeomorphic graphs A and B 

A graph G is said to be planar if it can be represented on a plane in such a fashion that the 

vertices are all distinct points, the edges are simple curves, and no two edges meet one another 

except at their terminals. For example, K4, the complete graph on four vertices, is planar, 

as Figure 4A shows. 

Two graphs are said to be homeomorphic if both can be obtained from the same graph by 

subdivisions of edges. For example, the graphs in Figure 4A and Figure 4B are homeomorphic. 

The Km,n graph is a graph for which the vertex set can be divided into two subsets, one 

with m vertices and the other with n vertices. Any two vertices of the same subset are 

nonadjacent, whereas any two vertices of different subsets are adjacent. The Polish 

mathematician Kazimierz Kuratowski in 1930 proved the following famous theorem: 

 

Two graphs important to planar properties 

A necessary and sufficient condition for a graph G to be planar is that it does not contain 

a subgraph homeomorphic to either K5 or K3,3 shown in Figure 5. 

An elementary contraction of a graph G is a transformation of G to a new graph G1, such 

that two adjacent vertices u and υ of G are replaced by a new vertex w in G1 and w is adjacent 
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in G1 to all vertices to which either u or υ is adjacent in G. A graph G* is said to be a contraction 

of G if G* can be obtained from G by a sequence of elementary contractions. The following is 

another characterization of a planar graph due to the German mathematician K. Wagner in 1937. 

A graph is planar if and only if it is not contractible to K5 or K3,3. 

The four-colour map problem 

For more than a century the solution of the four-colour map problem eluded every analyst 

who attempted it. The problem may have attracted the attention of Möbius, but the first written 

reference to it seems to be a letter from one Francis Guthrie to his brother, a student of Augustus 

De Morgan, in 1852. 

The problem concerns planar maps that is, subdivisions of the plane into nonoverlapping 

regions bounded by simple closed curves. In geographical maps it has been observed 

empirically, in as many special cases as have been tried, that, at most, four colours are needed in 

order to colour the regions so that two regions that share a common boundary are always 

coloured differently, and in certain cases that at least four colours are necessary. (Regions that 

meet only at a point, such as the states of Colorado and Arizona in the United States, are not 

considered to have a common boundary).  

A formalization of this empirical observation constitutes what is called “the four-colour 

theorem.” The problem is to prove or disprove the assertion that this is the case for every planar 

map. That three colours will not suffice is easily demonstrated, whereas the sufficiency of five 

colours was proved in 1890 by the British mathematician P.J. Heawood. 

In 1879 A.B. Kempe, an Englishman, proposed a solution of the four-colour problem. 

Although Heawood showed that Kempe’s argument was flawed, two of its concepts proved 

fruitful in later investigation.  

One of these, called unavoidability, correctly states the impossibility of constructing a 

map in which every one of four configurations is absent (these configurations consist of a region 

with two neighbours, one with three, one with four, and one with five).  

The second concept, that of reducibility, takes its name from Kempe’s valid proof that if 

there is a map that requires at least five colours and that contains a region with four (or three or 

two) neighbours, then there must be a map requiring five colours for a smaller number of 

regions. Kempe’s attempt to prove the reducibility of a map containing a region with five 

neighbours was erroneous, but it was rectified in a proof published in 1976 by Kenneth Appel 
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and Wolfgang Haken of the United States. Their proof attracted some criticism because it 

necessitated the evaluation of 1,936 distinct cases, each involving as many as 500,000 logical 

operations. Appel, Haken, and their collaborators devised programs that made it possible for a 

large digital computer to handle these details. The computer required more than 1,000 hours to 

perform the task, and the resulting formal proof is several hundred pages long. 

Eulerian cycles and the Königsberg bridge problem 

A multigraph G consists of a non-empty set V(G) of vertices and a subset E(G) of the set 

of unordered pairs of distinct elements of V(G) with a frequency f ≥ 1 attached to each pair. If the 

pair (x1, x2) with frequency f belongs to E(G), then vertices x1 and x2 are joined by f edges. 

An Eulerian cycle of a multigraph G is a closed chain in which each edge appears exactly 

once. Euler showed that a multigraph possesses an Eulerian cycle if and only if it is connected 

(apart from isolated points) and the number of vertices of odd degree is either zero or two. 

 

Seven bridges of Königsberg and multigraph. 

This problem first arose in the following manner. The Pregel River, formed by 

the confluence of its two branches, runs through the town of Königsberg and flows on either side 

of the island of Kneiphof. There were seven bridges, as shown in Figure 6A. The townspeople 

wondered whether it was possible to go for a walk and cross each bridge once and once only. 

This is equivalent to finding an Eulerian cycle for the multigraph in Figure 6B. Euler showed it 

to be impossible because there are four vertices of odd order. 

Directed graphs 

A directed graph G consists of a non-empty set of elements V(G), called vertices, and a 

subset E(G) of ordered pairs of distinct elements of V(G). Elements (x, y) of E(G) may be called 

edges, the direction of the edge being from x to y. Both (x, y) and (y, x) may be edges. 
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A closed path in a directed graph is a sequence of vertices x0x1x2 · · · xn = x0, such that 

(xi, xi + 1) is a directed edge for i = 0, 1, · · ·, n − 1. To each edge (x, y) of a directed graph G there 

can be assigned a non-negative weight function f(x, y). The problem then is to find a closed path 

in G traversing all vertices so that the sum of the weights of all edges in the path is a minimum.  

This is a typical optimization problem. If the vertices are certain cities, the edges are 

routes joining cities, and the weights are the lengths of the routes, then this becomes 

the travelling-salesman problem—that is, can he visit each city without retracing his steps? This 

problem still remains unsolved except for certain special cases. 

Combinatorial geometry 

The name combinatorial geometry, first used by Swiss mathematician Hugo Hadwiger, is 

not quite accurately descriptive of the nature of the subject. Combinatorial geometry does touch 

on those aspects of geometry that deal with arrangements, combinations, and enumerations of 

geometric objects; but it takes in much more.  

The field is so new that there has scarcely been time for it to acquire a well-defined 

position in the mathematical world. Rather it tends to overlap parts of topology (especially 

algebraic topology), number theory, analysis, and, of course, geometry. The subject concerns 

itself with relations among members of finite systems of geometric figures subject to various 

conditions and restrictions.  

More specifically, it includes problems of covering, packing, symmetry, extrema 

(maxima and minima), continuity, tangency, equalities, and inequalities, many of these with 

special emphasis on their application to the theory of convex bodies. A few of the fundamental 

problems of combinatorial geometry originated with Newton and Euler. The majority of the 

significant advances in the field, however, have been made since the 1940s. 

The unifying aspect of these disparate topics is the quality or style or spirit of the 

questions and the methods of attacking these questions. Among those branches 

of mathematics that interest serious working mathematicians, combinatorial geometry is one of 

the few branches that can be presented on an intuitive basis, without recourse by the investigator 

to any advanced theoretical considerations or abstractions. 

Yet the problems are far from trivial, and many remain unsolved. They can be handled 

only with the aid of the most careful and often delicate reasoning that displays the variety and 
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vitality of geometric methods in a modern setting. A few of the answers are natural and are 

intuitively suggested by the questions.  

Many of the others, however, require proofs of unusual ingenuity and depth even in the 

two-dimensional case. Sometimes a plane solution may be readily extendible to higher 

dimensions, but sometimes just the opposite is true, and a three-dimensional or n-dimensional 

problem may be entirely different from its two-dimensional counterpart. Each new problem must 

be attacked individually. The continuing charm and challenge of the subject are at least in part 

due to the relative simplicity of the statements coupled with the elusive nature of their solutions. 

Some historically important topics of combinatorial geometry 

Packing and covering 

 

Packing of disks 

It is easily seen that six equal circular disks may be placed around another disk of the 

same size so that the central one is touched by all the others but no two overlap (Figure 7) and 

that it is not possible to place seven disks in such a way. In the analogous three-dimensional 

situation, around a given ball (solid sphere) it is possible to place 12 balls of equal size, all 

touching the first one but not overlapping it or each other.  

One such arrangement may be obtained by placing the 12 surrounding balls at the 

midpoints of edges of a suitable cube that encloses the central ball; each of the 12 balls then 

touches four other balls in addition to the central one. But if the 12 balls are centred at the 

12 vertices of a suitable regular icosahedron surrounding the given ball, there is an appreciable 

amount of free space between each of the surrounding balls and its neighbours. (If the spheres 

have radius 1, the distances between the centres of the surrounding spheres are at least 2/cos 18° 

= 2.1029 · · · .) It appears, therefore, that by judicious positioning it might be possible to have 13 

equal non-overlapping spheres touch another of the same size. This dilemma between 12 and 13, 
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one of the first nontrivial problems of combinatorial geometry, was the object of discussion 

between Isaac Newton and David Gregory in 1694. Newton believed 12 to be the correct 

number, but this claim was not proved until 1953. The analogous problem in four-dimensional 

space was solved in 2003, the answer being 24. 

The problem of the 13 balls is a typical example of the branch of combinatorial geometry 

that deals with packings and coverings. In packing problems the aim is to place figures of a given 

shape or size without overlap as economically as possibly, either inside another given figure or 

subject to some other restriction. 

 

Covering of part of a plane with triangles 

Problems of packing and covering have been the objects of much study, and some 

striking conclusions have been obtained. For each plane convex set K, for example, it is possible 

to arrange nonoverlapping translates of K so as to cover at least two-thirds of the plane; if K is a 

triangle (and only in that case), no arrangement of nonoverlapping translates covers more than 

two-thirds of the plane (Figure 8). Another famous problem was Kepler’s conjecture, which 

concerns the densest packing of spheres. If the spheres are packed in cannonball fashion that is, 

in the way cannonballs are stacked to form a triangular pyramid, indefinitely extended then they 

fill π/Square root of√18, or about 0.74, of the space. In 1611 the German astronomer Johannes 

Kepler conjectured that this is the greatest density possible, but it was proved only in 1998 by 

the American mathematician Thomas Hales. 

Covering problems deal in an analogous manner with economical ways of placing given 

figures so as to cover (that is, contain in their union) another given figure. One famous covering 

problem, posed by the French mathematician Henri Lebesgue in 1914, is still unsolved: What is 

the size and shape of the universal cover of least area? Here a convex set C is called universal 

cover if for each set A in the plane such that diam A 1 it is possible to move C to a suitable 
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position in which it covers A. The diameter diam A of a set A is defined as the least upper bound 

of the mutual distances of points of the set A. If A is a compact set, then diam A is simply the 

greatest distance between any two points of A. Thus, if A is an equilateral triangle of side 1, then 

diam A = 1; and if B is a cube of edge length 1, then diam B = Square root of√3. 

Polytopes 

 

Prism and truncated pyramid 

A (convex) polytope is the convex hull of some finite set of points. Each polytope of 

dimensions d has as faces finitely many polytopes of dimensions 0 (vertices), 1 (edge), 2 (2-

faces), · · ·, d-1 (facets). Two-dimensional polytopes are usually called polygons, three-

dimensional ones polyhedra.  

Two polytopes are said to be isomorphic, or of the same combinatorial type, provided 

there exists a one-to-one correspondence between their faces, such that two faces of the first 

polytope meet if and only if the corresponding faces of the second meet. The prism and the 

truncated pyramid of Figure 9 are isomorphic, the correspondence being indicated by the letters 

at the vertices.  

To classify the convex polygons by their combinatorial types, it is sufficient to determine 

the number of vertices υ; for each υ ≥ 3, all polygons with υ vertices (υ-gons) are of the same 

combinatorial type, while a υ-gon and a υ′-gon are not isomorphic if υ ≠ υ′. Euler was the first to 

investigate in 1752 the analogous question concerning polyhedra.  

He found that υ − e + f = 2 for every convex polyhedron, where υ, e, and f are the 

numbers of vertices, edges, and faces of the polyhedron. Though this formula became one of the 

starting points of topology, Euler was not successful in his attempts to find a classification 

scheme for convex polytopes or to determine the number of different types for each υ. Despite 

efforts of many famous mathematicians since Euler (Steiner, Kirkman, Cayley, Hermes, 
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Brückner, to mention only a few from the 19th century), the problem is still open for polyhedra 

with more than 19 vertices.  

The numbers of different types with four, five, six, seven, or eight vertices are 1, 2, 7, 34, 

and 257, respectively. It was established by American mathematician P.J. Federico in 1969 that 

there are 2,606 different combinatorial types of convex polyhedra with nine vertices. The 

number of different types for 18 vertices is more than 107 trillion. 

The theory of convex polytopes has been successful in developments in other directions. 

The regular polytopes have been under investigation since 1880 in dimensions higher than three, 

together with extensions of Euler’s relation to the higher dimensions. (The Swiss geometer 

Ludwig Schläfli made many of these discoveries some 30 years earlier, but his work was 

published only posthumously in 1901.) The interest in regular polyhedra and other special 

polyhedra goes back to ancient Greece, as indicated by the names Platonic solids and 

Archimedean solids. 

Since 1950 there has been considerable interest, in part created by practical problems 

related to computer techniques such as linear programming, in questions of the following type: 

for polytopes of a given dimension d and having a given number υ of vertices, how large and 

how small can the number of facets be? Such problems have provided great impetus to the 

development of the theory. The U.S. mathematician Victor L. Klee solved the maximum 

problem in 1963 in most cases (that is, for all but a finite number of υ’s for each d), but the 

remaining cases were disposed of only in 1970 by P. McMullen, in the United States, who used 

a completely new method. 

Incidence problems 

In 1893 the British mathematician J.J. Sylvester posed the question: If a finite set S of 

points in a plane has the property that each line determined by two points of S meets at least one 

other point of S, must all points of S be on one line? Sylvester never found a satisfactory solution 

to the problem, and the first (affirmative) solutions were published a half century later. Since 

then, Sylvester’s problem has inspired many investigations and led to many other questions, both 

in the plane and in higher dimensions. 

Helly’s theorem 

In 1912 Austrian mathematician Eduard Helly proved the following theorem, which has 

since found applications in many areas of geometry and analysis and has led to numerous 
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generalizations, extensions and analogues known as Helly-type theorems. If K1, K2, · · ·, Kn are 

convex sets in d-dimensional Euclidean space E
d
, in which n ≥ d + 1, and if for every choice 

of d + 1 of the sets Ki there exists a point that belongs to all the chosen sets, then there exists a 

point that belongs to all the sets K1, K2, · · ·, Kn. The theorem stated in two dimensions is easier 

to visualize and yet is not shorn of its strength:  

If every three of a set of n convex figures in the plane have a common point (not 

necessarily the same point for all trios), then all n figures have a point in common. If, for 

example, convex sets A, B, and C have the point p in common, and convex sets A, B, and D have 

the point q in common, and sets A, C, and D have the point r in common, and sets B, C, 

and D have the point s in common, then some point x is a member of A, B, C, and D. 

Although the connection is often far from obvious, many consequences may be derived 

from Helly’s theorem. Among them are the following, stated for d = 2 with some higher 

dimensional analogues indicated in square brackets: 

A. Two finite subsets X and Y of the plane [d-space] may be strictly separated by a 

suitable straight line [hyperplane] if and only if, for every set Z consisting of at most 4 [d + 2] 

points taken from X ∪ Y, the points of X ∩ Z may be strictly separated from those of Y ∩ Z. (A 

line [hyperplane] L strictly separates X and Y if X is contained in one of the open half planes [half 

spaces] determined by L and if Y is contained in the other.) 

B. Each compact convex set K in the plane [d-space] contains a point P with the 

following property: each chord of K that contains P is divided by P into a number of segments so 

the ratio of their lengths is at most 2d. 

C. If G is an open subset of the plane [d-space] with finite area [d-dimensional content], 

then there exists a point P, such that each open half plane [half space] that contains P contains 

also at least 1/3 [1/(d + 1)] of the area [d-content] of G. 

D. If I1, · · ·, In are segments parallel to the y-axis in a plane with a coordinate 

system (x, y), and if for every choice of three of the segments there exists a straight line 

intersecting each of the three segments, then there exists a straight line that intersects all the 

segments I1, · · ·, In. 

Theorem D has generalizations in which kth degree polynomial curves y = akx
k
 + · · · 

+ a1x + a0 take the place of the straight lines and k + 2 replaces 3 in the assumptions. These are 

important in the theory of best approximation of functions by polynomials. 
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Methods of combinatorial geometry 

Many other branches of combinatorial geometry are as important and interesting as those 

mentioned above, but rather than list them here it is more instructive to provide a few typical 

examples of frequently used methods of reasoning. Because the emphasis is on illustrating the 

methods rather than on obtaining the most general results, the examples will deal with problems 

in two and three dimensions. 

Exhausting the possibilities 

Using the data available concerning the problem under investigation, it is often possible 

to obtain a list of all potential, a priori possible, solutions. The final step then consists in 

eliminating the possibilities that are not actual solutions or that duplicate previously found 

solutions. An example is the proof that there are only five regular convex polyhedra (the Platonic 

solids) and the determination of what these five are. 

From the definition of regularity it is easy to deduce that all the faces of a Platonic solid 

must be congruent regular k-gons for a suitable k, and that all the vertices must belong to the 

same number j of k-gons. Because the sum of the face angles at a vertex of a convex polyhedron 

is less than 2π, and because each angle of the k-gon is (k − 2)π/k, it follows that j(k − 2)π/k < 2π, 

or (j − 2)(k − 2) < 4.  

Therefore, the only possibilities for the pair (j, k) are (3, 3), (3, 4), (3, 5), (4, 3), and (5, 

3). It may be verified that each of these pairs actually corresponds to a Platonic solid, namely, to 

the tetrahedron, the cube, the dodecahedron, the octahedron, and the icosahedron, respectively. 

Very similar arguments may be used in the determination of Archimedean solids and in other 

instances. 

The most serious drawback of the method is that in many instances the number of 

potential (and perhaps actual) solutions is so large as to render the method unfeasible. Therefore, 

sometimes the exact determination of these numbers by the method just discussed is out of the 

question, certainly if attempted by hand and probably even with the aid of a computer. 

https://www.britannica.com/dictionary/verified
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Use of extremal properties 

 

Example of theorem on extremal properties 

In many cases the existence of a figure or an arrangement with certain desired properties 

may be established by considering a more general problem (or a completely different problem) 

and by showing that a solution of the general problem that is extremal in some sense provides 

also a solution to the original problem. Frequently there seems to be very little connection 

between the initial question and the extremal problem.  

As an illustration the following theorem will be proved: If K is a two-dimensional 

compact convex set with a centre of symmetry, there exists a parallelogram P containing K, such 

that the midpoints of the sides of P belong to K. The proof proceeds as follows: Of all the 

parallelograms that contain K, the one with least possible area is labeled P0.  

The existence of such a P0 is a consequence of the compactness of K and may be 

established by standard arguments. It is also easily seen that the centres of K and P0 coincide. 

The interesting aspect of the situation is that P0 may be taken as the P required for the theorem. 

In fact (Figure 10), if the midpoints A′ and A of a pair of sides of P0 do not belong to K, it is 

possible to strictly separate them from K by parallel lines L′ and L that, together with the other 

pair of sides of P0, determine a new parallelogram containing K but with area smaller than that 

of P0. The above theorem and its proof generalize immediately to higher dimensions and lead to 

results that are important in functional analysis. 

Sometimes this type of argument is used in reverse to establish the existence of certain 

objects by disproving the possibility of existence of some extremal figures. As an example the 

following solution of the problem of Sylvester discussed above can be mentioned. By a standard 

argument of projective geometry (duality), it is evident that Sylvester’s problem is equivalent to 

the question: If through the point of intersection of any two of n coplanar lines, no two of which 

https://cdn.britannica.com/36/7736-004-A4B88F69/Example-theorem-properties.jpg


Vol-9 Issue-2 2023                IJARIIE-ISSN(O)-2395-4396 
     

21348  ijariie.com 3131 

are parallel, there passes a third, are the n lines necessarily concurrent? To show that they must 

be concurrent, contradiction can be derived from the assumption that they are not concurrent. 

If L is one of the lines, then not all the intersection points lie on L. Among the intersection points 

not on L, there must be one nearest to L, which can be called A. Through A pass at least three 

lines, which meet L in points B, C, D, so that C is between B and D. Through C passes a line L* 

different from L and from the line through A. Since L* enters the triangle ABD, it intersects 

either the segment AB or the segment AD, yielding an intersection point nearer to L than the 

supposedly nearest intersection point A, thus providing the contradiction. 

The difficulties in applying this method are caused in part by the absence of any 

systematic procedure for devising an extremal problem that leads to the solution of the original 

question. 

Use of transformations between different spaces and applications of Helly’s theorem 

The methods of proof in combinatorial geometry may be illustrated in one example—the 

proof of a theorem concerning parallel segments. Let the segment Ii have endpoints (xi, yi) and 

(xi, y ′i), where yi y′i and i = 1, 2, · · ·, n. The case that two of the segments are on one line is 

easily disposed of; so it may be assumed that x1, x2, · · ·, xn are all different. With each straight 

line y = ax + b in the (x, y)-plane can be associated a point (a, b) in another plane, the (a, b)-

plane. Now, for i = 1, 2, · · ·, n, the set consisting of all those points (a, b) for which the 

corresponding line y = ax + b in the (x, y) plane meets the segment Ii can be denoted by Ki. This 

condition means that yi axi + b y ′i so that each set Ki is convex.  

The existence of a line intersecting three of the segments Ii means that the corresponding 

sets Ki have a common point. Then Helly’s theorem for the (a, b)-plane implies the existence of a 

point (a*, b*) common to all sets Ki. This in turn means that the line y = a*x + b* meets all the 

segments Ii, I2, · · ·, In, and the proof of theorem D is complete. 

In addition to the methods illustrated above, many other techniques of proof are used in 

combinatorial geometry, ranging from simple mathematical 

induction to sophisticated decidability theorems of formal logic. The variety of methods 

available and the likelihood that there are many more not yet invented continue to stimulate 

research in this rapidly developing branch of mathematics 
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