A STUDY ON SOME FUZZY HYPERSOFT SET SETS

Hemanga Barman, Gauhati University, Assam, India
Dr. Amar Jyoti dutta, Gauhati University, Assam, India

Abstract

Soft Set theory was first introduced by Molodtsov in 1999 as a general mathematical tool for dealing with fuzzy object. In 2019 Samarandache developed hypersoft set theory as an extension of soft set theory. In this work, Fuzzy Hypersoft sets operations such as like subset, union, Intersection, equal set, complement, AND and $O R$ are introduced..

Keywords:- Soft set, fuzzy soft set, hypersoft set, Complement, aggregation operations .

1. Introduction:

Numerous complicated problems include unclear data in social sciences, economics, medical scinces, engineering and other fields. These problems, with which one is faced in life, cannot be solved classical mathematical tools. In classical mathematics, a model is designed and the exact solution of this model is calculated. However, if the given situation contains uncertainty, solving the model with classical mathematical method is very complex. Fuzzy set theory[1], rough set theory [2] and other theories have been described to solve situations involving uncertainty. The fuzzy set theory introduced by Zadeh has become very popular for uncertainty problems and has been a suitable construct for representing uncertain concepts as it allows for the partial membership function. Mathematicians and computer scientists have worked on fuzzy sets ad over the years many useful applications of fuzzy set structure have emerged such as fuzzy control systems, automata, fuzzy logic, fuzzy topology. The soft set concept was developed by [3] as completely new math tool for solving difficulty in dealing with uncertainly. Molodtsov[3] defined a soft set that is sub-set as a parameterized fail of the set of the universe where each element is considered a set approximate elements of the soft set. In the past few years, the fundamentals of soft set theory have been studied by different researchers. Maji et al. [4] by combining the fuzzy set an soft set structure, it has created the fuzzy soft claster structure, which is a hybrid structure .Smarandache [8]introduced new technique handling uncertainty. By transforming the functionality into a multi-decision function, he generalized the soft set to hypersoft set. Although Hypersoft set theory is more recent, it has attracted great attention from researchers [9-14].
In this paper, we have discussed the fundamentals of fuzzy hypersoft set such as fuzzy hypersoft subset, complement, union, Intersection, AND and OR operators n a numerical example are also illustrated.

2. Preliminaries:-

2.1. Soft Set:-

Let U be an universe of discourse and $P(U)$ is the power set with respect to U. Let E be the set of the parameters or attributes and $A \subseteq E$. Then the pair $\left(F_{A}, E\right)$, where $f_{A}: E \rightarrow P(U)$ such that $f_{A}(x)=0$ if $x \notin A$ is called Soft Set over U .
Thus a Soft Set over U can be represented by the set of order pairs

$$
F_{A}=\left\{\left(x, f_{A}(x)\right) ; x \in E, f_{A}(x) \in \mathrm{P}(\mathrm{U})\right\}
$$

Example 1:-

Let $\mathrm{U}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ be an universal set and $E=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be a subset of parameters.

If $A=\left\{x_{1}, x_{2}, x_{4}\right\} \subseteq E, f_{A}\left(x_{1}\right)=\left\{u_{2}, u_{4}\right\}, f_{A}\left(x_{2}\right)=U$ and $f_{A}\left(x_{4}\right)=\left\{u_{1}, u_{3}, u_{5}\right\}$
then the soft set F_{A} is written by

$$
F_{A}=\left\{\left(x_{1},\left\{u_{2}, u_{4}\right\}\right),\left(x_{2}, U\right),\left(x_{4},\left\{u_{1}, u_{3}, u_{5}\right\}\right)\right\} .
$$

2.2.Fuzzy Soft Set:-

Let U be an universe of discourse and F^{U} is the collection of all fuzzy subsets of U. Let E be the set of parameters or attributes and $A \subseteq E$. Then the pair $\left(F_{A}, E\right)$ is called fuzzy Soft Set over U such that

$$
f_{A}: E \rightarrow \mathrm{~F}^{\mathrm{U}} .
$$

Thus a Fuzzy Soft Set over U can be represented by the set of order pairs

$$
F_{A}=\left\{\left(x, f_{A}(x)\right) ; x \in E, f_{A}(x) \in F(U)\right\}
$$

where $f_{A}(x)$ is called the membership function of $x \in E$.

Example 2:-

Let $\mathrm{U}=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ be an universal set and $E=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be a subset of parameters.
If $A=\left\{x_{1}, x_{2}, x_{4}\right\} \subseteq E, f_{A}\left(x_{1}\right)=\left\{0.9 / u_{2}, 0.5 / u_{4}\right\}, f_{A}\left(x_{2}\right)=U$ and $f_{A}\left(x_{4}\right)=\left\{0.2 / u_{1}, 0.4 / u_{3}, 0.8 / u_{5}\right\}$
then the soft set F_{A} is written by

$$
F_{A}=\left\{\left(x_{1},\left\{0.9 / u_{2}, 0.5 / u_{4}\right\}\right), \quad\left(x_{2}, U\right), \quad\left(x_{4},\left\{0.2 / u_{1}, 0.4 / u_{3}, 0.8 / u_{5}\right\}\right)\right\} .
$$

2.3. Hypersoft Set :

Let $a_{1}, a_{2}, a_{3}, \ldots \ldots a_{n}$ be the distinct attributes whose attributes values belongs to the sets $A_{1}, A_{2}, A_{3}, \ldots A_{n}$ respectively, where $A_{i} \cap A_{j}=\emptyset$ for $\neq j$. A pair $\left(\phi, A_{1} \times A_{2} \times A_{3} \times A_{4} \times A_{5}\right)$ is called a hypersoft set over the universal set U , where ϕ is the mapping given by

$$
\phi: A_{1} \times A_{2} \times A_{3} \times A_{4} \times A_{5} \rightarrow P(U) .
$$

Example 3:-

Suppose that a Mr. X wants to buy a computer from a market. There are three kind of computers which from the set of discourse $\mathrm{U}=\left\{u_{1}, u_{2}, u_{3}\right\}$. Also consider the set of attributes given as

$$
E_{1}=\text { CPU Type }=\left\{\operatorname{Ryzen}\left(\alpha_{1}\right), \operatorname{Intel}\left(\alpha_{2}\right)\right\}
$$

$$
\begin{gathered}
E_{2}=\text { Case Size }=\left\{\text { Mid Toweer }\left(\beta_{1}\right), \text { Full Tower }\left(\beta_{2}\right), \text { Compact Case }\left(\beta_{3}\right\}\right. \\
E_{3}=\text { Hard Drive }=\left\{1 T B\left(\gamma_{1}\right), 512 G B\left(\gamma_{2}\right), 256 G B\left(\gamma_{3}\right)\right\}
\end{gathered}
$$

Suppose that

$$
\begin{aligned}
& A_{1}=\left\{\alpha_{2}\right\}, \quad A_{2}=\left\{\beta_{2}, \beta_{3}\right\}, \quad A_{3}=\left\{\gamma_{1}, \gamma_{2}\right\} \\
& B_{1}=\left\{\alpha_{1}, \alpha_{2}\right\}, \quad B_{2}=\left\{\beta_{1}, \beta_{2}\right\}, \quad B_{3}=\left\{\gamma_{1}\right\}
\end{aligned}
$$

are subset of E_{i},for each $=1,2,3$. Then the Hypersoft set $\left(\phi_{1}, A_{1} \times A_{2} \times A_{3}\right)$ and $\left(\phi_{2}, B_{1} \times B_{2} \times B_{3}\right)$ defined as follows-

$$
\begin{gathered}
\left(\phi_{1}, A_{1} \times A_{2} \times A_{3}\right)=\left\{\begin{array}{c}
<\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right),\left\{u_{1}, u_{2}\right\}>,<\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right),\left\{u_{1}, u_{2}, u_{3}\right\}> \\
,<\left(\alpha_{2}, \beta_{3}, \gamma_{1}\right),\left\{u_{1}, u_{3}\right\}>,<\left(\alpha_{2}, \beta_{3}, \gamma_{2}\right),\left\{u_{2}, u_{3}\right\}>
\end{array}\right\} \\
\left(\phi_{2}, B_{1} \times B_{2} \times B_{3}\right)=\left\{\begin{array}{c}
<\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right),\left\{u_{1}, u_{3}\right\}>,<\left(\alpha_{1}, \beta_{2}, \gamma_{1}\right),\left\{u_{2}, u_{3}\right\}> \\
,<\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right),\left\{u_{1}, u_{3}\right\}>,<\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right),\left\{u_{2}, u_{3}\right\}>
\end{array}\right\}
\end{gathered}
$$

3. Fuzzy Hypersoft Set:

Let U be an initial universal set and $E_{1} \times E_{2} \times E_{3} \times \ldots \times E_{n}$ be a set of parameters . Let $A_{1} \times A_{2} \times A_{3} \times \ldots \times$ A_{n} be the non-empty subset of $E_{1} \times E_{2} \times E_{3} \times \ldots \times E_{n}$. Then the pair ($\phi, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}$) is called a Fuzzy Hypersoft set over U, where F is the mapping given by

$$
\phi: A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n} \rightarrow \mathrm{~F}^{\mathrm{U}}
$$

where F^{U} denotes the collection of all fuzzy subsets of U .

Example 4:-

We consider that attributes in example 3 .Then the fuzzy sets $\left(\phi_{1}, A_{1} \times A_{2} \times A_{3}\right)$ and $\left(\phi_{2}, B_{1} \times B_{2} \times B_{3}\right)$ defined as follows -

$$
\begin{gathered}
\left(\Phi_{1}, A_{1} \times A_{2} \times A_{3}\right)=\left\{\begin{array}{l}
<\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right),\left\{\frac{u_{1}}{0.3}, \frac{u_{2}}{0.4}\right\}>,<\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right),\left\{\frac{u_{1}}{0.2}, \frac{u_{2}}{0.5}, \frac{u_{3}}{0.1}\right\}> \\
,<\left(\alpha_{2}, \beta_{3}, \gamma_{1}\right),\left\{\frac{u_{1}}{0.6}, \frac{u_{3}}{0.7}\right\}>,<\left(\alpha_{2}, \beta_{3}, \gamma_{2}\right),\left\{\frac{u_{2}}{0.4}, \frac{u_{3}}{0.5}\right\}>
\end{array}\right\} \\
\left(\Phi_{2}, B_{1} \times B_{2} \times B_{3}\right)=\left\{\begin{array}{l}
<\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right),\left\{\frac{u_{1}}{0.4}, \frac{u_{3}}{0.7}\right\}>,<\left(\alpha_{1}, \beta_{2}, \gamma_{1}\right),\left\{\frac{u_{2}}{0.3}, \frac{u_{3}}{0.6}\right\}> \\
,<\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right),\left\{\frac{u_{1}}{0.7}, \frac{u_{3}}{0.8}\right\}>,<\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right),\left\{\frac{u_{2}}{0.5}, \frac{u_{3}}{0.7}\right\}>
\end{array}\right\}
\end{gathered}
$$

3.2. Fuzzy Hypersoft Subset:

Assume that $\left(\phi_{1}, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right)$ and $\left(\phi_{2}, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$ be the two fuzzy hypersoft sets over the same universal sets U.
(a) ($\left.\phi, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right)$ is the Fuzzy Hypersoft subset of $\left(\psi, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$ denoted
$\left(\phi, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \subseteq\left(\psi, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$ if
(i) $\left(A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \subseteq\left(B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$
(ii) $\forall e \in A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n} \phi_{1}(e)$ and $\phi_{2}(e)$ are identical approximations .
(b) $\left(\phi_{1}, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right)$ is Fuzzy Hypersoft equal set to $\left(\phi_{2}, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$ and is denoted by
$\left(\phi_{1}, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right)=\left(\phi_{2}, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$ if
(i) $\left(\phi_{1}, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \subseteq\left(\phi_{2}, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$ and
(ii) $\left(\phi_{1}, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \supseteq\left(\Phi_{2}, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$

3.3. Complement of Fuzzy Hypersoft Set:

If $\left(\phi, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right)$ be the fuzzy hypersoft set and complement is denoted by $\left(\phi, A_{1} \times\right.$ $\left.A_{2} \times A_{3} \times \ldots \times A_{n}\right)^{c}$ and it is defined in such a way that

$$
\left(\phi, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right)^{c}=\left(\phi^{c}, \neg A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right)
$$

Where
$\phi: A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n} \rightarrow \mathrm{~F}^{\mathrm{U}}$ be a mapping as follows

$$
\phi^{c}(\alpha)=U-\phi(\neg \alpha), \forall \alpha \in \neg A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}
$$

3.4.Union of Fuzzy Hypersoft Sets:

Assume that $\left(\phi_{1}, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right)$ and ($\phi_{2}, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}$) be the two hypersoft sets over the same universal sets U , then union between them is denoted by $\left(\phi_{1}, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \cup\left(\phi_{2}, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$ is hypersoft set (ϕ, C)
where $\left.\mathrm{C}=A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \cup\left(B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$ and $\forall e \in C$, such that

$$
F(e)=\left\{\begin{array}{cc}
\phi_{1}(e) & \text { if } e \in\left(A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right)-\left(B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right) \\
\phi_{2}(e) & \text { if } e \in\left(B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)-\left(A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \\
\phi_{1}(e) \cup \phi_{2}(e) & \text { if } e \in\left(A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \cap\left(B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)
\end{array}\right.
$$

3.5. Intersection of Fuzzy Hypersoft Sets

Assume that ($\phi_{1}, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}$) and ($\phi_{2}, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}$) be the two hypersoft sets over the same universal sets U , then intersection between them is denoted by

$$
\left(\phi_{1}, A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \cap\left(\phi_{2}, B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right) \text { is hypersoft set }(\phi, C)
$$

where $\mathrm{C}=\left(A_{1} \times A_{2} \times A_{3} \times \ldots \times A_{n}\right) \cap\left(B_{1} \times B_{2} \times B_{3} \times \ldots \times B_{n}\right)$ and $\forall e \in C$, such that

$$
F(e)=\phi_{1}(e) \cap \phi_{2}(e)
$$

3.6. AND Operation

Let U be an initial universe set and $\left(\phi_{1}, A\right)$ and $\left(\phi_{2}, B\right)$ be two fuzzy hypersoft sets over the universe U . The 'AND' operation on them is denoted by $\left(\phi_{1}, A\right) \wedge\left(\phi_{2}, B\right)=(\psi, A \times B)$ is given by

$$
(\psi, A \times B)=\left\{<u, \psi_{\left(\epsilon_{1}, \epsilon_{2}\right)}(u)>; u \in U,\left(\epsilon_{1}, \epsilon_{2}\right) \in A \times B\right\}
$$

Where $\psi_{\left(\epsilon_{1}, \epsilon_{2}\right)}(u)=\left\{<u, \min \left\{\phi_{1_{\epsilon_{1}}}(u), \phi_{\epsilon_{\epsilon_{2}}}(u)\right\}>\right\}$

3.7. OR Operation

Let U be an initial universe set and $\left(\phi_{1}, A\right)$ and $\left(\phi_{2}, B\right)$ be two fuzzy hypersoft sets over the universe U . The 'OR' operation on them is denoted by $\left(\phi_{1}, A\right) \vee\left(\phi_{2}, B\right)=(\psi, A \times B)$ is given by

$$
(\psi, A \times B)=\left\{<u, \psi_{\left(\epsilon_{1}, \epsilon_{2}\right)}(u)>; u \in U,\left(\epsilon_{1}, \epsilon_{2}\right) \in A \times B\right\}
$$

Where $\psi_{\left(\epsilon_{1}, \epsilon_{2}\right)}(u)=\left\{<u, \max \left\{\phi_{1_{\epsilon_{1}}}(u), \phi_{2_{\epsilon_{2}}}(u)\right\}>\right\}$.

Example 5:-

We consider that attributes in example 3 . Then the fuzzy sets $\left(\phi_{1}, A_{1} \times A_{2} \times A_{3}\right)$ and $\left(\phi_{2}, B_{1} \times B_{2} \times B_{3}\right)$ defined as follows-

$$
\begin{gathered}
\left(\phi_{1}, A_{1} \times A_{2} \times A_{3}\right)=\left\{\begin{array}{l}
<\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right),\left\{\frac{u_{1}}{0.3}, \frac{u_{2}}{0.4}\right\}>,<\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right),\left\{\frac{u_{1}}{0.2}, \frac{u_{2}}{0.5}, \frac{u_{3}}{0.1}\right\}> \\
,<\left(\alpha_{2}, \beta_{3}, \gamma_{1}\right),\left\{\frac{u_{1}}{0.6}, \frac{u_{3}}{0.7}\right\}>,<\left(\alpha_{2}, \beta_{3}, \gamma_{2}\right),\left\{\frac{u_{2}}{0.4}, \frac{u_{3}}{0.5}\right\}>
\end{array}\right\} \\
\left(\phi_{2}, B_{1} \times B_{2} \times B_{3}\right)=\left\{\begin{array}{l}
\left\langle\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right),\left\{\frac{u_{1}}{0.4}, \frac{u_{3}}{0.7}\right\}>,<\left(\alpha_{1}, \beta_{2}, \gamma_{1}\right),\left\{\frac{u_{2}}{0.3}, \frac{u_{3}}{0.6}\right\}>\right. \\
,<\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right),\left\{\frac{u_{1}}{0.7}, \frac{u_{3}}{0.8}\right\}>,<\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right),\left\{\frac{u_{2}}{0.5}, \frac{u_{3}}{0.7}\right\}>
\end{array}\right\}
\end{gathered}
$$

Let us assume that, $\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right)=J_{1},\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)=J_{2},\left(\alpha_{2}, \beta_{3}, \gamma_{1}\right)=J_{3},\left(\alpha_{2}, \beta_{3}, \gamma_{2}\right)=J_{4}$ in $\left(\phi_{1}, A_{1} \times A_{2} \times\right.$ $\left.A_{3}\right)$ and $\left(\alpha_{1}, \beta_{1},\right)=K_{1},\left(\alpha_{1}, \beta_{2}, \gamma_{1}\right)=K_{2},\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right)=K_{3},\left(\alpha_{2}, \beta_{2}, \gamma_{1}\right)=K_{4}$ in $\left(\phi_{2}, B_{1} \times B_{2} \times B_{3}\right)$.

The tabular form of these sets are as follows.

$\left(\Phi_{1}, \boldsymbol{A}_{\mathbf{1}} \times \boldsymbol{A}_{\mathbf{2}} \times \boldsymbol{A}_{\mathbf{3}}\right)$	$\boldsymbol{u}_{\mathbf{1}}$	$\boldsymbol{u}_{\mathbf{2}}$	$\boldsymbol{u}_{\mathbf{3}}$
J_{1}	0.3	0.4	0
J_{2}	0.2	0.5	0.1
J_{3}	0.6	0	0.7

J_{4}	0	0.4	0.5

$\left(\phi_{2}, \boldsymbol{B}_{1} \times \boldsymbol{B}_{\mathbf{2}} \times \boldsymbol{B}_{3}\right)$	$\boldsymbol{u}_{\mathbf{1}}$	$\boldsymbol{u}_{\mathbf{2}}$	$\boldsymbol{u}_{\mathbf{3}}$
K_{1}	0.4	0	0.7
K_{2}	0	0.3	0.6
K_{3}	0.7	0	0.8
K_{4}	0	0.5	0.7

Then the AND and OR operations of these sets are given as below.

| $\left(\phi_{1}, \mathbf{A}_{\mathbf{1}} \times \mathbf{A}_{\mathbf{2}} \times \mathbf{A}_{\mathbf{3}}\right) \wedge\left(\phi_{2}, \mathbf{B}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{2}} \times \mathbf{B}_{3}\right)$ | $\boldsymbol{u}_{\mathbf{1}}$ | $\boldsymbol{u}_{\mathbf{2}}$ | $\boldsymbol{u}_{\mathbf{3}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $J_{1} \times K_{1}$ | 0.3 | 0 | 0 |
| $J_{1} \times K_{2}$ | 0 | 0.3 | 0 |
| $J_{1} \times K_{3}$ | 0.3 | 0 | 0 |
| $J_{1} \times K_{4}$ | 0 | 0.4 | 0 |
| $J_{2} \times K_{1}$ | 0.2 | 0 | 0.1 |
| $J_{2} \times K_{2}$ | 0 | 0.3 | 0.1 |
| $J_{2} \times K_{3}$ | 0.2 | 0 | 0.1 |
| $J_{2} \times K_{4}$ | 0 | 0.5 | 0.1 |
| $J_{3} \times K_{1}$ | 0.4 | 0 | 0.7 |
| $J_{3} \times K_{2}$ | 0 | 0 | 0.6 |
| $J_{3} \times K_{3}$ | 0.6 | 0 | 0.7 |
| $J_{3} \times K_{4}$ | 0 | 0 | 0.7 |
| $J_{4} \times K_{1}$ | 0 | 0 | 0.5 |
| $J_{4} \times K_{2}$ | 0 | 0.3 | 0.5 |
| $J_{4} \times K_{3}$ | 0 | 0 | 0.5 |
| $J_{4} \times K_{4}$ | 0 | 0.4 | 0.5 |
| | | | |

$\left(\phi_{\mathbf{1}}, \mathbf{A}_{\mathbf{1}} \times \mathbf{A}_{\mathbf{2}} \times \mathbf{A}_{\mathbf{3}}\right) \mathrm{V}\left(\phi_{2}, \mathbf{B}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{2}} \times \mathbf{B}_{\mathbf{3}}\right)$	$\boldsymbol{u}_{\mathbf{1}}$	$\boldsymbol{u}_{\mathbf{2}}$	$\boldsymbol{u}_{\mathbf{3}}$
$J_{1} \times K_{1}$	0.4	0.4	0.7
$J_{1} \times K_{2}$	0.3	0.4	0.6
$J_{1} \times K_{3}$	0.7	0.4	0.8
$J_{1} \times K_{4}$	0.3	0.5	0.7
$J_{2} \times K_{1}$	0.4	0.5	0.7
$J_{2} \times K_{2}$	0.2	0.5	0.6
$J_{2} \times K_{3}$	0.7	0.5	0.8

$J_{2} \times K_{4}$	0.2	0.5	0.7
$J_{3} \times K_{1}$	0.6	0	0.7
$J_{3} \times K_{2}$	0.6	0.3	0.7
$J_{3} \times K_{3}$	0.7	0	0.8
$J_{3} \times K_{4}$	0.6	0.5	0.7
$J_{4} \times K_{1}$	0.4	0.4	0.7
$J_{4} \times K_{2}$	0	0.4	0.6
$J_{4} \times K_{3}$	0.7	0.4	0.8
$J_{4} \times K_{4}$	0	0.5	0.7

3. Conclusions:

In this paper, we have discussed the fundamentals of fuzzy hypersoft set such as fuzzy hypersoft subset, complement, union, Intersection, AND and OR operators. This results will be very helpful for future experts to enhance the work for Intuitionistic fuzzy hypersoft set, Neutrosophic fuzzy hypersoft set, Plithogenic hypersoft set and hypersoft multi sets among others

4. References:-

[1]Zadeh, L.A. (1965). Fuzzy sets, Information and Control, 8(3), 338-353.
[2]Pawlak, Z. (1982). Rough sets, International Journal of Computer and Information Sciences, 11(5), 341-356
[3] Molodtsov, Soft set theory-first results, computers and mathematics with applications, pp.19-31, 1999.
[4] Maji, P.K., Biswas, R. and Roy, A.R, Soft set theory, Computers and mathematics with applications, pp.
555-562, 2003
[5]Tridiv Jyoti Neog, Dusmanta Kumar Sut, A new Approach to the theory of soft set, International Journal of computer applications,pp.0975-8887, 2011.
[6] Ge X and Yang S, Investigations on some operations of soft sets, world academy of Science, Engineering and Technology, pp. 1113-1116, 2011.
[7] Manoj Borah, Tridiv Jyoti Neog, Dusmanta Kumar Sut, A study on some operations of fuzzy soft sets, International Journal of Modern Engineering Research, pp.0975-8887, 2011.
[8] F. Smarandache, Extension of Soft Set to Hypersoft Set, and then to Plithogenic Hypersoft Set, Neutrosophic sets and system. 22(2018), 168-170.
[9]Saqlain, M., Jafar, N., Moin, S., Saeed, M., \& Broumi, S. (2020). Single and Multi-valued Neutrosophic Hypersoft set and Tangent Similarity Measure of Single valued Neutrosophic Hypersoft Sets. Neutrosophic. [10] Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., \& Kumar, R. (2020). Introduction to plithogenic hypersoft subgroup. Neutrosophic Sets and Systems, 33(1), 14.
[11] Rana, S., Qayyum, M., Saeed, M., Smarandache, F., \& Khan, B. A. (2019). Plithogenic Fuzzy Whole Hypersoft Set, Construction of Operators and their Application in Frequency Matrix Multi Attribute.
[12] Martin, N., \& Smarandache, F. (2020). Concentric Plithogenic Hypergraph based on Plithogenic Hypersoft
[13] Saeed, M., Ahsan, M., Siddique, M. K., \& Ahmad, M. R. (2020). A Study of The Fundamentals of Hypersoft Set Theory, International Journal of Scientific \& Engineering Research, 11(1).
[14] Saqlain, M., Moin, S., Jafar, M. N., Saeed, M., \& Smarandache, F. (2020). Aggregate Operators of NeuSets andSystems, 32, 317-329. DecisionMaking Technique. sets-ANovel Outlook. Neutrosophic Sets andSystems, 33. trosophicHypersoft Set. Neutrosophic Sets andSystems, 32, 294-306.

