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Abstract— Unmanned Aerial Vehicles (UAVs), and Mobile Edge Computing (MEC), have emerged as a promising 

method for extending computational power to smart mobile devices in wireless communication networks that have 

limited battery life. UAVs that use dynamic task prioritization adjust job priorities in real-time in response to shifting 

mission requirements, changing environmental factors, and changing system environments. The joint optimization of 

the user-UAV organization, regional processing frequency, transmit authority, bandwidth allocation, and UAV 

trajectories maximizes the overall number of processing bits for all users while satisfying the energy consumption 

and speed constraints. We are obtaining the solution through genetic algorithm with pareto front optimization 

technique. Directly obtaining the global optimum solution is difficult as the issue is not convex. The non-convex 

problem is broken down into smaller issues and is then resolved by an alternating optimization approach. The 

approach presented in our study that outperforms fixed trajectory patterns, complete offloading, and local 

computing methods. 
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I. INTRODUCTION 

The amount of data traffic on mobile devices is increasing dramatically due to the rise in the number of 

wirelessly linked devices [1]. A novel computer architecture called MEC has been established to deliver low-

latency and high-robust applications to end users [2]. MEC shows the benefits of reduced execution time and 

energy usage by harvesting the idle processing and storing ability of edge devices in a network [3], including 

bases stations (BSs) and access points (APs) that are wireless. 

 

On the other hand, classic MEC systems have an inflexible and expensive deployment of MEC servers that is 

closely tied with ground infrastructures [4]. The use of MEC in conjunction with UAVs has emerged as a viable 

strategy to overcome this problem. MEC servers are mounted on UAVs, that act as floating edge computing 

hubs. UAV-aided MEC devices are more adaptable and simpler to set up than standard MEC systems [5]. As a 

result, in scenarios like disaster assistance, military training, or rescue efforts when there is little ground 

infrastructure, UAV-assisted MEC systems can handle the situation. 

Resource allocation and task offloading algorithms have been optimized extensively in an effort to improve the 

efficiency of UAV-aided MEC system. Hu et al. [7], for instance, they offer both a globally and a locally 

optimum approach for the energy consumption reduction issue in an UAVs-aided MEC system, whereby the 

optimization of compute task division, communication resource allocation, and UAV deployment is combined. 

Similar to this, Wang et al. [8] proposed a UAV deployment method in a massive multi-UAV-aided MEC 

system in order to reduce the system's energy usage. The Differential evolutionary (DE) technique is used to 

jointly optimize the quantity and locations of UAVs. By optimizing the 3-D positions of UAVs, Sun et al. [9] 

developed a Sequential Polygonal Approximation (SPA) based approach to minimize the processing time of 

UAVs.  

 

It is important to note that the fixed placements of the UAVs that is mentioned in [7], [8], and [9] prevent them 

from fully using the adaptability of UAVS. A two-stage technique for optimizing the calculation of bits in a 

UAV-assisted MEC wirelessly powered system is presented in [10].  
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In Qian et al [11] jointly optimize the user-UAV organization, UAV trajectory, and transmission power of each 

user equipment (UE) in order to investigate the offloading bits maximization difficulties in a UAV-based MEC 

system. A UAV-assisted MEC irelessly powered system is examined in [12], with the UAV flying on a 

predetermined path. The best user service sequences are found by using flow-shop scheduling approaches. 

However, in [10], [11], and [12] considered only a single UAV, which regrettably restricts the potential of 

UAV-assisted MEC systems. 

 

This work investigates a multi-UAV-aided system to fully utilize numerous UAVs and their variable mobility. 

In this study, we jointly optimize the regional processing rate, transmit power, bits allocation, user-UAV 

association, and UAV trajectories in order to maximize the overall number of processing bits for all users. 

 
Figure 1: UAV Communication Model 

 

The optimization is split up into smaller problems, each of which is handled using a different technique: 

Integer programming, Convex optimization. After that, an alternate algorithm is proposed to fix the initial issue. 

Based on simulations, the approach presented in our study outperforms fixed trajectory patterns, complete 

offloading, and local computing. 

 

                          II. LITERATURE SURVEY 

1) Computation Offloading and Resource Allocation: 

 

In [10], a UAV must have dependable contact with BSs throughout the slot while it is flying to a certain area 

for a specific mission. The objective is to minimize the UAV's completion time by 2-D trajectory optimization, 

by considering the BS-UAV link's connection restriction.  

In [11] look at a group of UAVs cooperating, and they suggest choosing a mechanism for data distribution 

between UAV-to-infrastructure and UAV-to-UAV. In order to maximize the uplink data rate, allocation of 

resources and speed optimization are then proposed.  

In [12] it is described that the secure communication is based on UAVs. One UAV is used for data transmission, 

and the other is used to jam the ground-based eavesdroppers in a two-UAV system. The design of UAV 

trajectory and user scheduling maximizes the lowest worst-case confidentiality data rate achievable for the 

Global unmanned system. 

Regarding the 3-D orbit design, the UAV system is taken into consideration for both periodic & temporal 

operating modes in [13]. The goal is to reduce the amount of time that the UAV must fly or take to complete the 

mission in each scenario.  

To achieve equitable performance, in [14] it is presented that maximizing the lowest possible throughput of 

each ground user (GU). The techniques for user scheduling, power allocation, and route planning are given. 

In order to maximize the group's minimal throughput within a certain time frame, in [15] it is presented that a 

transmit allocation of power and 3-D trajectory design optimization technique. To maximize the total system 

usefulness, a drone-based tiny cell placement challenge is investigated in [16].  

In [17] and [18], transmit power distribution and user association techniques are described to increase uplink 

dependability by considering the combined optimization of the UAVs' position and movement.  

 

The work proposed in [19] is to maximize the processing speed of a solar-powered UAV system within a certain 

time frame by addressed the challenges of resource allocation and trajectory planning. Increasing quality of 
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service, or QoS, is closely related to task scheduling and load balancing, and compute offloading can assist by 

shifting workloads to nearby MEC servers. A two-layer optimization strategy for concurrently optimizing task 

planning and UAV deployment is given in [21]. The highest-level optimized UAV deployment, while the 

bottom layer accomplished job scheduling based on the stated UAV deployment. Yang et al. [22] achieved 

multi-UAV load balancing while adhering to IoT node QoS requirements and coverage restrictions. Furthermore, 

in order to enhance the effectiveness of every UAV's task delivery, an advanced deep learning with retraining 

(DRL) scheduling technique was created. Researchers often see energy consumption as the optimization goal for 

computing and communication. Bit distribution, duration scheduling, power allocation, and UAV trajectory 

design were all optimized in Zhang et al. [23] by minimizing the total energy consumption (which includes 

interaction, computing, and UAV flight). 

 

Furthermore, resource allocation can reduce resource waste by distributing resources to low-power ground 

devices fairly. In MEC systems, resource allocation and computation offloading are often combined. Seid et al. 

[24] proposed a model-free directional light-based cooperative allocate resources & computation offloading 

technique in an Ariel to Ground (A2G) network Each UAV head in the cluster acted as the agent, distributing 

resources among Border Network of Things sensors independently and autonomously.  

 

Yu et al. [25] introduced an innovative UAV-enabled MEC system that combined UAVs and Edge Clouds 

(ECs) to provide MEC services for IoT devices. The authors' proposed system optimized UAV status, 

communication, task-splitting, & computer resource allocation to minimize the weighted total of service latency 

and UAV energy consumption for all IoT devices. Using a multiagent width dynamic guideline gradient 

(MADDPG) approach, Peng and Shen [8] were able to quickly determine vehicle connectivity and resource 

allocation during the online executing stage while managing heterogeneous QoS restrictions.  

Nie et al. [9] concurrently optimized resource allocation, customers association in and power regulation in a 

MEC system with many UAVs and suggested a multiagent federated reinforcement learning (MFRL), technique 

to protect the privacy of the low-power ground devices. 

Joint trajectory planning for unmanned aerial vehicles has been the subject of extensive research. The study of 

trajectory-planning issues for solitary vehicles is currently at a higher level of development. However, the 

complicated nature of combat operations frequently results in a variety of collaboration and performance limits 

when many UCAVs are used in cooperative missions [29]. Cheng et al. [30] defined a decentralized multi-UAV 

path-planning technique especially made for areas with plenty of obstacles to solve these problems. The goal of 

this method is to overcome the computational and scalability restrictions of conventional multi-UAV path-

planning techniques. Similar to this, Liu et al. [31] examined the cooperation and flying limitations of UAVs 

and created a 3-D environmental model that included geographic data. The study conducted by Chen et al. [32], 

on the other hand, examined the dynamic and partly visible character of the surrounding conditions and 

accomplished k-diff multi-UAV collaborative autonomous routing in unknown situations. 

 

 Furthermore, Li et al. [33] presented a multi-drone path-planning method to overcome issues with low efficiency 

in proactively avoiding obstacles in a 3-D hilly terrain, lengthy planned pathways, and low stability. Additionally, 

a multi-UAV joint path-planning technique based on attention training was presented by Wang et al. [34]. In 

order to maximize multimachine collaboration, this strategy considers several aspects such as path length, load 

balance, endurance limits, and survival probability. 

The intricacy of combat duties sometimes gives rise to various forms of cooperation and performance 

restrictions during execution of joint missions involving numerous UCAVs [29]. Current approaches often fall 

short of fully addressing these limitations, leading to trajectory failures that are not suitable for multi-UCAV 

collaborative warfare [35]. 

 

2) Trajectory Design:  

 

 An extensive work has been done on UAV trajectory optimisation. To lowering the latency and saving 

energy, it may boost communication throughput and enhance low-power ground devices for quality of service. 

Ji et al. [18] used a combined UAV path and resource allocation strategy to minimize the calculated energy 

consumption of UAVs and GDs in the 2-D plane sole UAV scenario. The authors alternatively optimized the 

trajectory and allocation of resources in each iteration because of the nonconvexity.  

In Qin et al. [19] optimized each UAV's trajectory to minimize task completion time in the 2-D surface multi-

UAV scenario while guaranteeing that all sensor's data was collected. The scientists presented a method for 

hover point selection, wherein UAVs systematically gathered data from several sensors. 

DRL might offer a useful way to address the trajectory of the UAV. Owing to the intricate actions and vast 

state dimensions present in UAV communication situations, the agents in the RL framework interact with the 

environment to learn and "trial and error” way to the best course of action. Simultaneously, deep learning is 
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presented as a reasonable solution to the huge data dimension problem. Yin and Yu [20] presented a novel 

networked multiagent RL system for overall throughput optimization and modelled the distribution of resources 

and trajectory planning as a decentralised partially transparent Markov decision process. By separately 

regulating each UAV trajectory, Wang et al. [21] simultaneously optimized the geographic unfairness of all a 

ground devices (GDs), the GDs-load unfairness of each UAV, including the total energy consumption of GDs. 

By creating a UAV trajectory, Qin et al. [22] defined a weighted throughput maximization issue and explained 

user-level justice based on proportional equitable scheduling. 

The situation of 3-D planar multi-UAV-assisted MEC has not been extensively studied. The complexity of 3-

D planar UAV actions makes it challenging to get the best answer with conventional algorithms. Few 

researchers are currently employing DRL to address the multi-UAV trajectory problem in three dimensions. 

Through trajectory design & frequency band allocation, Ding et al. [23] accomplished energy-efficient equitable 

communication and overall throughput maximization for a quad-rotor single UAV. The energy consumption 

models were developed as a function of the single UAV's 3-D motion. Effective 3-D path design for many 

UAVs was examined in [24]. The multi-UAV 3-D fluid motion problem was defined to be solved using a 

constrained deep Q-network (cDQN) approach. 

In contrast, there are several papers working on 2-D trajectory design (e.g. carried out the horizontal positions) 

of the UAV by fixing its altitude. To address the problem of control over a group of UAVs in a long term, in  [8] 

it utilizes the deep reinforcement learning (DRL) to minimize the energy consumption of the overall network 

while maintaining the reliable connectivity.  

 

II. SYSTEM MODEL 

 

Figure 2 depicts the multi-UAV assisted system, in which every UAV interface with a potent MEC server. 

Each of the system's UAVs & M users has a strong on-board computer processor that supports computing for 

users while the UAV is in flight. 

 
Figure 2: The model of multi-UAV-aided system 

First, we design a model of the 3-D dynamic multi-UAV assisted system. Next, the system's processing and 

communication models as well as the UAV's flying model are executed. Finally, we frame the problem as the 

system's overall energy consumption including interaction, computing, and UAV flying, based on the fairness 

assumption for each UAV's load. 

 

A. Task Prioritization: 

 

Managing task arrival and prioritization is essential for maintaining the overall effectiveness and 

responsiveness of the system. Numerous sources, including sensors, external systems, and ground-based stations, 

can produce tasks. 

Distinct tasks may have distinct characteristics, such as priority levels, deadlines, and computational needs. 

establishing a task arrival frequency depending on the tasks' type and the environment's features. Depending on 

the operating environment of the system, arrival rates will change. 
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Figure 3: Dynamic Task Prioritization 

 

Computational tasks are sorted according to their urgency, computational, complexity and criticality. Give each 

task a set of characteristics that will assist decide its priority. Create routes of communication so that UAVs, 

stations on the ground, and other relevant parties may share task information. 

In multi-UAV aided systems, a dynamic task prioritization strategy should be adaptable, considering real-time 

task arrivals, dynamic priority modifications, and effective resource allocation. Overall in this method the 

maximum task performance is observed.  

 

B. Genetic Algorithm Pareto Front Optimization 

 

One method for resolving multi-objective optimization problem is to employ a Genetic Algorithm Pareto 

Front optimization function. A collection of solutions known as the Pareto Front is one in which no solution 

may be enhanced for one goal without impairing performance for another. The Pareto Front optimization in a 

Genetic Algorithm involves developing a population of potential solutions in order to identify a collection of 

non-dominated and varied solutions. 

Since each solution in a multi objective optimization issue may maximize one objective function while 

sacrificing any of the others, there may be more than one solution that is deemed optimum.  

A collection of solutions known as the Pareto frontier shows which trade-offs among all the goal functions 

are most advantageous. The Pareto frontier is a solution that is not dominated by any of the other possibilities in 

the possible solution space. In our work latency and throughput are normalized using this approach, so that both 

the parameters performance is not compromised and effective solution is achieved.  

 

C. Working Procedure of Multi Objective Algorithms 
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Figure 4: Pareto Front Optimization 

 

Defining the issue and goals is the first stage. In this stage, the problem is defined as a collection of 

constraints and decision variables. Furthermore, we specify the goals. In addition, the goals have to be 

measurable in order that we can assess how well the solutions work. 

Random population initialization is the second phase. We create a random population in this stage. 

Furthermore, the complexity of the problem affects the number of the population. The produced solutions must 

next be assessed. We assess the answers or view the goals. This is a crucial stage because it enables the 

algorithm to order the solutions according to how well they perform. The assessment procedure may incur 

significant computing costs. Therefore, selecting effective assessment techniques is essential. 

We rate the solutions based on the Pareto ranking in order to determine which is the best option. Based on 

how well each solution performs for each goal, a Pareto rating is used to compare them. If no other answer in 

the viable solution space dominates a given solution, we refer to it as Pareto-optimal.  

We determine the Pareto frontier remedies based in the Pareto ranking. Furthermore, by eliminating 

dominated solutions, we get the Pareto frontier solutions. Moreover, the residual solutions constitute the Pareto 

frontier, signifying the collection of non-dominated solutions deemed to be optimal for trade-offs. The non-

dominated solutions must be chosen for replication in the following stage. We use genetic operators like 

crossover and mutation to execute the reproduction stage and produce new solutions. 

Later, we increase the population of solutions. We now verify that the resulting solution satisfies the halting 

requirement. It returns the Pareto optimum solution if it meets the halting condition. If not, we begin with a new 

set of solutions and return to the development of the at random solution step. Further, it keeps repeating till the 

halting requirement is satisfied. 

Simple is the Pareto dominance principle. There are two answers provided, s and s'. If at least a single of the 

goals is met and the remaining ones are not worse, then solution s dominates solution s'. This obviously creates 

a partial order, as it's possible that none of the two solutions [Gendreau, M., and Potvin, J.Y. (2010)] dominate 

the other. It is important that the solutions do not exhibit dominance in comparison to the solutions examined 

during the metaheuristic run. As a result, our set of solutions approximates the ideal Pareto front. This estimate 

is referred to as the estimate Pareto front in our paper. A function with an objective value can be used to 

determine the quality of a good solution in single-objective situations. The issue becomes hazy when we 

compare two approaches that are represented with estimate Pareto fronts. 

 

An estimate of the UAVs' energy use per task input bit. (applies the PSO optimisation method) 

 

Bit-by-bit energy consumption (E_per_bit) =   

 

 
 

This may be expressed mathematically as E_per_bit = 

  

 
 

As the mission duration and task input bit grow, the overall energy usage falls. Energy consumption for 

offloading (Eoff) calculates the offloading factor for user u, sum of probability of users and UAVs, data rate of 

user, offloading time of user, effective offloading rate of user, queuing and processing time of user u, and 

calculates the local time, offloading time and execution time of user u a at edge servers. 

 

As activity input bits & operation duration rise, energy usage falls. At the maximum task intake bits and mission 

time values displayed in results, the eco-friendliest scenario takes place. There seems to be a non-linear 

relationship between mission time, activity input bits, and energy usage. A line joining data points on the results 

suggests a continuous link between the variables. The results do not provide specific data values, but the pattern 

is evident. The line slopes downhill from towards the left, illustrating a negative connection between energy 

usage and the sum of the variable of activity input bits & mission length. This indicates that energy usage 

reduces as task inputs bits and mission duration grow. Since the connection is non-linear, it is possible that there 

are thresholds or ideal values for the mission time and task input bits in order to maximize energy efficiency. 
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Subsequent investigations may explore into the fundamental processes propelling this correlation and pinpoint 

plausible approaches for enhancement. 

UAV trajectory design & bandwidth allocation comprises planning the drones' routes and distributing 

communication resources to achieve predetermined goals. Often, the optimization challenge involves 

minimizing interference, maximizing coverage, minimizing energy use, or striking a compromise between these 

competing objectives. 

Bandwidth allocation: Incorporates distance relationship with data rate, QoS, inference, and communication rate.  

 

ALGORITHM: Dynamic Task prioritization  

 

Initialize latency, throughput and energy consumption as [1,1,1] 

    if         strcmp (algorithm, 'GA') 

               options = optimoptions (gamultiobj, 'PlotFcn', gaplotpareto, 'Display', 'iter'); 

               optimizer = gamultiobj; 

    else if strcmp (algorithm, 'PSO') 

               options = optimoptions (particleswarm, 'PlotFcn', pswplotpareto, 'Display', 'iter'); 

                optimizer = particleswarm; 

    else 

                error ('Invalid optimization algorithm. Choose ''GA'' or ''PSO''.'); 

    end if 

 

   We have considered an objective function that calculates the objective values for the given set of parameters. 

Declare the objectives and set options for optimization algorithm. Taken an array containing optimized 

parameter values, ignored values (function handles excluded) and information about optimization process.  

The working involves defining optimization problem which minimizes multi-objective function. Run genetic 

algorithm (GA) using optimizer function gamultiobj, pass the objective function and other parameters as input. 

Store the optimized parameter values in a variable and ignore the additional values if they are not used in this 

context. If necessary, you can examine the details about the optimization process found in the output structure. 

                                   

V. EXPERIMENT RESULTS 

 

 

Figure 5: Dynamic task prioritization 
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Figure 6: Dynamic task prioritization using Pareto front. 

 

Figure 5 and 6 represents the outcomes of a multi-objective optimization problem using a Genetic Algorithm 

(GA). Here, latency i.e., the amount of time it takes to do a task and throughput i.e., the speed at which tasks are 

finished are the two factors that the GA aims to minimize.  

 

The Pareto front, or collection of optimal solutions that are not dominated by any other solution, is represented 

by the stars in the graph. In other words, there isn't another solution that possesses both reduced latency and 

increased throughput for any given Pareto front solution. 

 

 

Pareto front optimization function using evolutionary algorithm to normalize latency, throughput, and energy 

consumption often, there isn't a single "best" solution in multi-objective optimization scenarios including 

genetic algorithms.  

Rather, we possess a collection of solutions that embody the optimal compromises among several competing 

goals. The Pareto front is the name of this group of solutions. 

 

This set of answers is represented graphically in a space with several dimensions by a Pareto front graph. Every 

dimension denotes an objective function that is undergoing optimization. Pareto-frontal solutions are regarded 

as non-dominated. One goal function is represented by each axis. There are two axes in a 2-dimensional graph, 

which are often labelled with the initials of the objectives i.e., latency and throughput. More values on an axis 

typically indicate better achievement of that goal. Every point on the graph is a potential solution that the 

genetic algorithm was able to identify. The values of the point for all objective functions define its location in 

space. 

 

The shape or surface created by solutions that don't dominate is known as the Pareto front. It shows the range of 

potential compromises between the goals without compromising on effectiveness. 
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Figure 7: Trajectory design and Bandwidth allocation 

 

Figure 7: Shows the energy consumption throughout the course of the mission across the task input bits (total 

energy consumption decreases during the mission length). Also, the graph represents total energy consumption 

decreases during the mission length.  

X-axis- Task input bits (Mbits) this likely represents the amount of data or information each UAV needs to 

handle on its assigned task. Y-axis - total energy consumption (J) this represents the total energy each UAV 

consumes during its assigned task. The proposed scheme consistently has the lowest energy consumption across 

all task input bit values. This shows that the proposed scheme is more efficient in terms of energy usage 

compared to single access and fixed trajectory approaches. By employing collaboration and dynamically 

adjusting trajectories and bandwidth allocation based on task requirements, the proposed scheme can 

significantly reduce energy consumption compared to traditional single access and fixed trajectory approaches. 

 

 
Figure 8: PSO and GA comparison results 

 

In the cases when GA outperforms PSO, GA also exhibits higher convergence towards the ideal solution than 

PSO. Fig 8 showing the convergence rate of PSO and GA algorithms for an optimization problem. X-axis 

represents the generation or iteration number, Y-axis represents the objective function value, with lower values 

indicating better solutions. In GA convergence, GA line appears to have a steeper initial descent, presents it 

finds better solutions faster in the early stages. The PSO line has a slower initial descent but seems to eventually 

reach a lower objective function value than GA. 

  

A comparison between GA and PSO across all displayed data points, GA looks to be more environmentally 

friendly than PSO. It appears that the two algorithms' differences in energy usage are greater for lower beliefs of 

task intake bits and mission duration. In addition, it appears that GA converges faster to the best solution (lowest 

energy usage) than PSO did. 
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Figure 9: UAV Trajectories with different input distributions 

X-axis represents the number of task input bits, ranging from 0 to 10. Y-axis represents the probability 

density, which indicates the relative frequency of a certain number of input bits occurring. Blue line represents 

the uniform distribution. In this case, all values between 0 and 10 have an equal probability of occurring. This 

means the line is flat across the X-axis. Green line represents the normal distribution. The peak of the curve is at 

the mean value of the distribution, and the probability of input bit values decreases as you move away from the 

mean in either direction.  Orange line represents the Poisson distribution. The peak of the curve is at 0 input 

bits, and the probability of input bit values decreases as the number of bits increases. Overall, this provides a 

helpful visualization of the different probability distributions that can be used to model UAV task input bits. 

 
Figure 10: Optimized UAV trajectories 

Fig 10 represents the UAV trajectories with optimal positions where X axis represents the  task input bits and Y 

axis represents different distrubutions with respect to UAV trajectories. The optimal positions shows that they 

have achieved the normalized latency and throughput with the proposed multi-objective algorithm the red lines, 

with optimized positions indicating an optimized UAV trajectory. The lines indicate distinct beginning and 

finishing sites for each trajectory, with their starting points on the left & endings on the right. The lines are 

curved and smooth, showing effective routes that get around obstructions and other limitations. 

 

In figure 11 messages showing whether the IoT or UAV device falls within the communication spectrum and 

the data each device has received will be included in the simulation output. If the devices are not within 

communication range, this will be displayed in output. This offers a fundamental modelling framework for 

comprehending situations of data transfer in a basic 3-D environment between a UAV as an IoT device.  

The negative value in the graph shows that the data transfer is between UAV and IoT from the Z-axis in a 3D 

representation. This is shown in Fig 13. Also, negative value in data transfer indicates which means that the 

UAVs positioned in Z axis are communicating with IoT device. If UAVs are not under communication range, 

then a message is displayed on the output screen. 
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Figure 11: Data transfer between UAV and IoT 

 

In figure 12 messages showing whether the IoT or UAV device falls within the communication spectrum and 

the data each device has received will be included in the simulation's output. If the devices are not within 

communication range, this will also be shown by the output. This offers a fundamental modelling framework for 

comprehending situations of data transfer in a basic 3-D environment between a UAV as an IoT device. 

 

 
 

Figure 12: Figure 12: Communication between base station, UAV and IoT 

 

Displayed messages indicating whether every UAV falls within communication range of the base station and the 

IoT device will be included in the output. Additionally, it displays the data that each UAV receives from the 

central station as well as the data that each IoT device receives from each UAV. In order to keep things simple, 

this simulation uses random data. The IoT device and UAVs are assumed to travel in straight lines across time 

increments. The ability of devices to communicate with one another is determined by the communication ranges. 

In order to comprehend communication situations including a centre station, UAVs, & an IoT item in a 3D 

space, this offers a fundamental simulation framework. 
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Figure 13: Dynamic 3D planning 

 

Figure 13 shows dynamic 3-D planning in 3-D space. The line passes the obstacles and reaching the optimized 

position so that it can reach the target position without any restrictions, this ensures goal optimization. The 

dynamic planning including task prioritization for obstacle avoidance within 3-D space is shown in this graph. 

The system under consideration has barriers, a goal position, and a beginning position. Finding the optimal 

location that satisfies restrictions and minimizes a cost function is the goal. The result consists of a 3-D graphic 

of the situation and the optimized position. This illustrates a basic dynamic planning for trajectory scenario in 

which the system seeks to avoid obstacles and achieve an objective. By giving various tasks varying weights, 

tasks may be prioritized. Finding the ideal system position that strikes a balance between achieving the goal and 

minimizing impediments is the main goal of optimization. 

IV. CONCLUSIONS 

In this research, we maximize the overall number of processing bits per user for multi-UAV assisted systems. 

The non-convex computing bits maximization problem is approached by splitting it into smaller problems, and 

using our suggested altering optimization technique, a locally optimum solution is found. Thereby achieving 

less energy consumption in the system.  By employing dynamic task prioritization with GA and PSO 

simulations showed that, within the energy constraint, the approach presented in our study outperforms the fixed 

trajectory, localized computing, and complete offloading patterns. Also, this shows the obstacle avoidance in 3-

D space with pareto optimization technique which minimizes the cost function. Also, by considering the use 

case scenario the work shows the communication between base station, UAV and IoT device and data transfer 

between UAV and IoT device. 
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