
Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4738 www.ijariie.com 5070

An approach to solve n-Queens problem using

Genetic Algorithm
Harshada Talnikar

1
 , Shivaji Pansare

2

1
Asst. Professor, Dept. Of Computer Science, SN Arts, DJM Commerce, BNS Sci College,

Sangamner.Maharashtra, India

2
Asst. Professor, Dept. Of Computer Science, SN Arts, DJM Commerce, BNS Sci College,

Sangamner.Maharashtra, India

ABSTRACT

Genetic algorithm (GAs) is powerful method which uses heuristic approach. It is capable of searching

large spaces of possible solutions in an efficient manner. This paper approaches an implementation of Genetic

Algorithm for solving n-Queens problem. It provides an efficient way to solve the problem than traditional

backtracking method. In proposed genetic algorithm, members of the population are represented by number of

chromosomes. Each chromosome is a possible board position in the n queens game. Instead of traditional approach

the proposed algorithm gives efficient solution in terms of reduced time and efforts.

KEYWORDS : Genetic Algorithm, n-Queens problem, chromosome, population, crossover.

I. INTRODUCTION

The N-QUEENS PROBLEM is to place eight queens on a chessboard so that no two queens attack each

other. It is combinatorial problem. This problem can be stated as placing n no attacking queens on an nxn

chessboard. Since each queen must be on a different row and column, we can assume that queen i is placed in i-th

column. All solutions to the n-queens problem can be represented as n-tuples (q1, q2, …, qn) that are permutations

of an n-tuple (1, 2, 3, …, n). Position of a number in the tuple represents queen's column position, and its value

represents queen's row position. This representation of the solution space where two of the constraints (row and

column conflicts) are already satisfied should be searched in order to eliminate the diagonal conflicts also.

Complexity of this problem is O(n!).

A general approach to find solution for N-QUEENS PROBLEM:

 Create a solution matrix of the same structure as chess board.

 Whenever place a queen in the chess board, mark that particular cell in solution matrix.

 At the end print the solution matrix, the marked cells will show the positions of the queens in the

chess board.

Algorithm:

1. Place the queens column wise, start from the left most column

2. If all queens are placed.

1. return true and print the solution matrix.

3. Else

1. Try all the rows in the current column.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4738 www.ijariie.com 5071

2. Check if queen can be placed here safely if yes mark the current cell in solution matrix as 1 and try

to solve the rest of the problem recursively.

3. If placing the queen in above step leads to the solution return true.

4. If placing the queen in above step does not lead to the solution , BACKTRACK, mark the current

cell in solution matrix as 0 and return false.

4. If all the rows are tried and nothing worked, return false and print NO SOLUTION.

Fig 1 shows Unique Solutions 8-Queens Problem. The solution is represented as (3,6,2,7,14,8,5) means- queen1 is

placed on row1 and column 3, queen2 is placed on row2 and column 6, queen3 is placed on row3 and column 2 and

so on.

Fig 1 Solutions 8-Queens Problem

To determining a good fitness function for n-Queen problem is important. A fitness function determines

how close a wrong solution is to a correct one. Since n-tuple representation eliminates row and column conflicts,

wrong solutions have queens attacking each other diagonally. A fitness function can be designed to count diagonal

conflicts. For a correct solution, the function will return zero.

For a simple method of finding conflicts [1],

consider an n tuple (q1,..., qi,..., qj, ..., qn). i-th and j-th queen share a diagonal if:

 i- qi=j- qj or i+ qi=j+ qj

 which reduces to: mod(qi- qj)=mod(i-j)

This simple approach results in fitness function with complexity of O(n2). It is possible to reduce complexity to

O(n) by observing diagonals on the board.

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4738 www.ijariie.com 5072

II. GENETIC ALGORITHMS
Genetic algorithms uses search and optimization procedures based on 3 principles

1 Selection

2. Crossover

3. Mutation.

GAs simulate those processes in natural populations which are essential to evolution. Exactly which

biological processes are essential for evolution? In nature, individuals in a population compete with each other for

resources such as food, water and shelter. Also, members of the same species often compete to attract a mate. Those

individuals which are most successful in surviving and attracting mates will have relatively larger numbers of

offspring. Poorly performing individuals will produce few of even no offspring at all. This means that the genes

from the highly adapted, or "fit" individuals will spread to an increasing number of individuals in each successive

generation. The combination of good characteristics from different ancestors can sometimes produce "super fit"

offspring, whose fitness is greater than that of either parent. In this way, species evolve to become better suited to

their environment. Each individual is assigned a "fitness score" according to how good a solution to the problem it

is. Potential solutions are obtained as individuals that are evaluated using a fitness function representing a problem

being optimized.

Basic structure of a genetic algorithm is shown in the following list:

1. A random population of individuals (potential solutions) is created. All individuals are evaluated using a fitness

function.

2. Certain number of individuals that will survive into next generation is selected using selection operator. Selection

is somewhat biased, favoring "better" individuals.

3. Selected individuals act as parents that are combined using crossover operator to create children.

4. A mutation operator is applied on new individuals. It randomly changes few individuals (mutation probability is

usually low)

5. Children are also evaluated. Together with parents they form the next generation.

 Steps 2.-5 are repeated until a given number of iterations have been run, solution improvement rate falls

below some threshold, or some other stop condition has been satisfied.

III. PROPOSED ALGORITHM

As genetic algorithms work by applying “Natural Selection” to a population so that only the fittest in the

population can survive. In our implementation of the genetic algorithm members of the population are represented

by number of chromosomes. Each chromosome is a possible board position in the n queens game.

All such possible generated chromosomes in the population mutate until only the “fittest”, which in our

case is the solution with least conflicts among the queens remain.

At each iteration, the chromosomes are generated. The breed function given below select two random chromosomes

from the population and combines. This breed function act as follows

 If both parents have same board positions, the child is assigned it.

 For the remaining position random numbers are generated to form chromosomes following the constraint

not to have more than one queen in the same row.

 CompareParents(cls, parent1, parent2)

 {

 if (len(parent1) != len(parent2))

 return "Error"

 if (parent1 == parent2)

 parent2 = Chromosome.random(len(parent2))

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4738 www.ijariie.com 5073

 possible = [i for i in range(len(parent1))]

 current = [-1 for i in range(len(parent1))]

 for i in range(len(parent1))

 if(parent1 == parent2[i])

 current[i] = parent1[i]

 possible.remove(current[i])

 for i in range(len(parent1))

 if(current[i] == -1)

 current[i] = random.choice(possible)

 possible.remove(current[i])

 return cls(current)

 }

 Then using genetic mutation is applied to the chromosome according to probability. The mutation

probability is compared against a random number. If the random number falls below the probability

number the gene is mutated by switching two random positions in the chromosome.

 Then a new third random chromosome is selected and replaced using the newly created child chromosome.

 mutate(self, mutation_prob = .001)

 {

 if (random.random() < mutation_prob)

 index1 = random.randint(0,len(self)-1)

 index2 = random.randint(0,len(self)-1)

 temp = self.chromosome[index1]

 self.chromosome[index1] = self.chromosome[index2]

 self.chromosome[index2] = temp

 }

 At each iteration the population is sorted according to fitness it gets. The fitness of the chromosome is

calculated using the number of conflicts in the board. This is calculated using the cost function.

 Cost(self)

 {

 cost = 0;

 for i in range(len(self.chromosome))

 cost+=self.chromosome.count(self.chromosome[i]) - 1

 cost+=self.DiagonalCost(i)

 return cost

 }

 DiagonalCost(self,index)

 {

 cost = 0

 for i in range(len(self.chromosome))

 if(i != index)

 dx = abs(index - i)

 dy = abs(self.chromosome[index] - self.chromosome[i])

 if(dx == dy)

 cost= cost+1

Vol-3 Issue-2 2017 IJARIIE-ISSN(O)-2395-4396

4738 www.ijariie.com 5074

 return cost

 }

The chromosome is fit if the number of conflicts is the lowest. If the fittest chromosome is a solution the

algorithm ends. If not the iteration of n-queen continues until a solution is found or the limit to iterations is reached.

IV. RESULT

The following solutions can be constructed using the following table.

Solution #
Elements show which column to use per chessboard row

Row 0 Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7

1 0 4 7 5 2 6 1 3

2 0 5 7 2 6 3 1 4

3 1 3 5 7 2 0 6 4

4 1 4 6 0 2 7 5 3

5 1 4 6 3 0 7 5 2

6 1 5 0 6 3 7 2 4

7 1 5 7 2 0 3 6 4

8 1 6 2 5 7 4 0 3

9 1 6 4 7 0 3 5 2

10 2 4 1 7 0 6 3 5

11 2 4 7 3 0 6 1 5

12 2 5 1 4 7 0 6 3

V. CONCLUSION

This paper attempted to solve n-Queen problem using genetic algorithms. n-Queen problem represents a

large class of NP problems which cannot be solved in a reasonable amount of time using deterministic methods.

Although using heuristic methods for solving problems genetic algorithms proved able to solve combinatory

problems with simple "yes" and "no" answers. Furthermore, tests showed that GA is able to find different solutions

for a given number of queens.

REFERENCES
[1] Ellis Horowitz and Sartaj Sahni, Fundamentals of computer algorithms,

Computer Science Press Inc., Rockville, MD, 1978.
[1] I. Martinjak and M. Golub, “Com-parison of Heuristic Algorithms for the N-Queen Problem”, Proceedings of

the ITI 2007 29th Int. Conf. on Information Technology Interfaces, June 25, 2007.

[2] K. D. Crawford, “Solving the N-Queens Problem Using GA”, In Proceedings ACM/SIGAPP Symposium on

Applied Computing, Kansas City, 1992, pages 1039-1047.

[3] Božiković, Marko, G. "paralleling genetic algorithm", Faculty of Electrical Engineering and Computing, Zagreb,

22.05.2006.

[4] Sloane, Neil J. A., Number of ways of placing n non attacking queens on n x n board, The On-Line Encyclopedia

of Integer Sequences id:A000170, http://www.research.att.com/~njas/sequence,s/A000170, (30.01.2007.)

