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Abstract 

We try to give one method of resolution of the Cauchy problem for heat equation with fractional Laplacian by 

exploiting the generalized function theory 
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1. Introduction 

 

This paper concerns the Cauchy problem for the following heat equation 

                                      
2

0

( , ) ( ) ( , ) ( , )

(0, )

f t x f t x S t x

f x f


   

 

    𝑡 > 0 , 𝑥 ∈ ℝ𝑛, 0 < 𝛽 < 1 (1.1) 

And the aim  is to show, how the theory of distribution solves this equation, obviously we must give the 

solution.For that we will have to recall the mathematical theory necessary for this problem,the generalized 

functions theory and the semigroup,see [10]. All the same, there are certain mathematical properties that must be 

remembered during the solving 

This  paper is organized as follows. Section 2 presents some important definitions and proprieties used in this 

paper.The section section 3 will be divided into 3 parts, the first will be devoted to finding the  elementairy 

solution of the heat equation with fractional operator  and the resolution of (1) when S is genarlized function 

with compact support. The second part  will be for the equation (1.1) without second member.The last part is for 

(1.1) when  
2 1( , ( ) ( ))N NS C L L   

2. Preliminairy 

We consider the fractional Laplace operator 
2( )L


    in ℝ𝑁, with  0,1  and Nℕ∗. 

Definition 1 

For the  definition of L that: we will use a Fourier definition : 

Let 𝒳 be any of the spaces 
pL , [1, 2]p  and let f ∈ 𝒳 hence Lf   𝒳 see[12] 

                                               

                                                ℱ(𝐿𝑓)(𝜉) = −|𝜉|𝛽ℱ(𝑓)(𝜉)                                           (2.1)  

 

To define the fractional Laplacian for less regular functions, we need to understand what 
2( )


  is in the sense 

of distributions. One may then think in the following way. For 𝑢 ∈ 𝒮′ 
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(a tempered distribution) and f ∈ 𝒮 one could define the distribution 2( ) u


  as 

2 2( ) , , ( )u f u f
 

   .The problem here is that 2( ) f


 𝒮, so this identity makes no sense for u 

∈ 𝒮′. First we need to characterize the set 2( )


 (𝒮). See [13],[14],[15] 

Proprety 1 Let. f ∈ 𝒮 ,then 2( ) f


 𝒮𝛽

2

 belongs to the class  𝒮𝛽

2

 defined by 

  𝒮𝛽

2

= {𝜓 ∈ 𝐶∞(ℝ𝑁): (1 + |𝑥|𝑛+𝛽)𝐷𝛾𝜓(𝑥) ∈ 𝐿∞(ℝ𝑁), 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝛾 ∈ ℕ𝑁} see[10] 

.  

. 

The class of 𝒮β

2

 of Lemma 1 is endowed with the topology induced by the countable family of seminorms   

( ) sup (1 ) ( )

.

N

N

x IR
x D x

 

  



 

 ,  𝛾 ∈ ℕ𝑁 

Denote by 𝒮𝛽

2

′   the dual space of𝒮𝛽

2

 . Observe that 𝒮 ⊂ 𝒮𝛽

2

 so that 𝒮𝛽

2

′ ⊂ 𝒮′. The suitable space for the 

distributional definition of the fractional Laplacian is 𝒮𝛽

2

′  

Definition 2. 

 Let ′𝑢 ∈ 𝒮𝛽

2

′  . We define (−𝛥)
𝛽

2𝑢 ∈ 𝒮′ as 2 2( ) , , ( )u f u f
 

         (2.2) 

for every 𝑓 ∈ 𝒮. 

 

Proprety 2 see[8] 

For 𝑥 ∈ ℝ𝑁 and t>0,let 
.

2

1
( )( ) ( , )

(2 )
N

i x t

N
S t x S t x e d


 

 




   .              (2.3)      

 For any function 𝑢0 defined on ℝ𝑁,  if  the convolution product is valid ,
2( )te



 
 is a strongly continuous 

semigroup on 𝐿𝑝(ℝ𝑁), p > 1, generated by the fractional power .
2( )


  and 

2( )

0 0 0( , )* ( )tS t x u e u P t u



    

Moreover S  satisfies : 

                       -      𝑆𝛽(1) ∈ 𝐿1(ℝ1) ∩ 𝐿∞                                                              (2.4) 

                      -     ( , ) 0S t x                                                                                   (2.5)  

     - ( , ) 1
NIR

S t x dx   (2 .6) for all 𝑥 ∈ ℝ𝑁and t>0 ,it means 
1( , ) ( )NS t x L IR  for all t>0 

          -  
2

1 1
( )

( )

N

r q

r

q

e v Ct v






   (2.7)   for all 𝑣 ∈ 𝐿𝑟(ℝ𝑁)  and all 1 ,r q    t>0 

     - using Young’s inequality  for the convolution : 

        
2( )

1
( , )* ( )t

qq
q

e v S x t v S t v



 

   for all 𝑣 ∈ 𝐿𝑞(ℝ𝑁)and all1 q   ,t>0(2.8) 

 

3 The resolution 

3.1 Elementary solution of heat fractional opérator 
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Proposition 3 (Elementary solution of heat fractional opérator) 

For all integer 1N  , the equation  2
( , ) (0,0)( ( ) )t x t xu



      (3.1)      has an unique solution 
NE  in 

𝒮′(ℝ𝑡 × ℝ𝑥
𝑁) , the set of the tempered distribution. Its support is  supp( )NE ℝ𝑡

+ × ℝ𝑁 

   and its partial Fourier transform into the variable x is the function 

 

                                       ( , )NE t 


= 1ℝ+
∗ (𝑡)

t
e




      , 𝜉 ∈ ℝ𝑁   (3.2) 

 

Proof : 

Let us find, for all 1N  , a distribution 𝐸𝑁 ∈ 𝒮′(ℝ𝑡 × ℝ𝑁) such that: 

- NE is function defined on ℝ𝑡 × ℝ𝑥
𝑁 and supp( )NE ℝ𝑡

+ × ℝ𝑁 

-  𝐸𝑁(𝑡, 𝑥) ∈ 𝐿1(ℝ𝑁) for all  t>0 such as 2
( , ) (0,0)( ( ) )t x N t xE



      in 𝒮′(ℝ𝑡 × ℝ𝑁) 

It is obvious that if E is an elementary solution of the heat fractional operator then E + Const. is also an 

elementary solution. 

We are going to remove this indetermination thanks to the following support condition 

 

 

 

𝑠𝑢𝑝𝑝(𝐸𝑁) ⊂ ℝ+ × ℝ𝑁 

Apply to the tempered distribution 𝐸𝑁 the partial Fourier transformation into the variable x, which we will 

denote by
NE


, we will also note    the dual Fourier variable of x. 

Note that 𝐸𝑁(𝑡, 𝑥) ∈ 𝐿1(ℝ𝑁) for all t> 0 hence we can use (2.1)Then we have 

 

                                           0 1t N N tE E


 
 

     in  𝒮′(ℝ𝑡 × ℝ𝑁)       (3.3) 

                                            

𝑠𝑢𝑝𝑝 ( )NE


⊂ ℝ+ × ℝ𝑁 

 

In particular, the restriction of NE


to ℝ+
∗ × ℝ𝑁 checks 

              𝜕𝑡 NE


|ℝ+
∗ ×ℝ𝑁 + |𝜉|𝛽

NE


|ℝ+
∗ ×ℝ𝑁 = 0 in 𝒮′(ℝ+

∗ × ℝ𝑁)                (3.4) 

This suggests choosing the distribution 
NE


|ℝ+
∗ ×ℝ𝑁   as being defined by a function of  form 

                                                   ( , ) ( )
t

t C e



 


  

And since the 
NE


  distribution is supported in ℝ+ × ℝ𝑁 , it is natural to find the distribution 
NE


  as being 

globally defined by the function 

                                     ( , )NE t 


= 1ℝ+
∗ (t) ( )

t
C e







      (𝑡, 𝜉) ∈ ℝ × ℝ𝑁     (3.5) 

If we take ( , )NE t 


= 1ℝ+
∗ (t)

t
e




.so 
.

2

1
( , ) ( , )

(2 )
N

i x t

N N

IR

E t x S t x e d


 





    for t>0 and 

Supp(𝐸𝑁) ⊂ ℝ+ 
∗ × ℝ𝑁 .Hence  𝐸𝑁(𝑡, 𝑥) ∈ 𝐿1(ℝ𝑁) for all t>0.(see (2.6)) 

Let us pass to the proof of uniqueness. Suppose there is another tempered distribution 
1

NE  satisfying the same 

properties as NE , and denote by 
1

N N NF E E      We can easily verify that NF  satisfies the hypotheses of the 

lemma below, from which we deduce that 
1

N N NF E E  =0 , that is to say that 
1

N NE E  

Lemma 4 
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Let  𝐹 ∈ 𝒮′(ℝ𝑡 × ℝ𝑁) such that  2( ( ) ) 0t F


     in 𝒮′(ℝ𝑡 × ℝ𝑁) and 𝑠𝑢𝑝𝑝(𝐹𝑁) ⊂ ℝ+ × ℝ𝑁 

 then  0F    see [1] 

 

3.2 Case where the initial data are are compact support distributions 

 Lemma 5 (Solution in 𝓓′ of an ODE, Cauchy problem) 

Let a ℂ, 𝑆 ∈ 𝐶𝑐(ℝ+; ℂ) and 𝑢0 ∈ ℂ,let 𝑢 ∈ 𝐶1(ℝ+; ℂ) the only solution of the Cauchy problem: 

                          𝑢′ + 𝑎𝑢 = 𝑆 for t>0 
                            𝑢(0) = 𝑢0 

Let U be a function defined on ℝ∗ with values in ℂ defined by: 

 

                           𝑈(𝑡) = 𝑢(𝑡) for t>0 and 𝑈(𝑡) = 0  for t<0 

 

Then  

(a)The function locally bounded 1ℝ+
(𝑡)𝐸𝑎(𝑡) = 1ℝ+

(𝑡)𝑒−𝑎𝑡  is an elementary solution of the differential 

operator 
𝑑

𝑑𝑡
+ 𝑎 on ℝ 

(b)  The function locally bounded U verifies 

                                            𝑈 = (1ℝ+
𝐸𝑎) ∗ (𝑢0𝛿0 + 1ℝ+

𝑆)  dans 𝒟′(ℝ) 

(c) The function locally bounded U defines the unique distribution on ℝ verifying 

                                         𝑈′ + 𝑎𝑈 = 1ℝ+
𝑆 + 𝑢0𝛿0 

                                               𝑠𝑢𝑝𝑝(𝑈) ⊂ ℝ+ 

Proof: see [1]  

Proposition 4(Solution in 𝓢′ of Cauchy problem for heat fractional equation when the initial data are in 

𝓔′) 

Let  be 1N  ,an initial data 𝑓0 ∈ ℰ′(ℝ𝑁) ∩ 𝐿1(ℝ𝑁) and a source term 𝑆 ∈ ℰ′(ℝ+
∗ × ℝ𝑁) such 𝑆(𝑡, . ) ∈ 𝐿1(ℝ𝑁) 

for all t>0, both with compact support 

There is then a unique solution within the meaning of the tempered distributions of the 

Cauchy problem for the heat  fractional equation with initial data 𝑓0 end and 

second member S. 

This solution 𝑓 is given by the formula 

                                           𝑓 = 𝐸𝑁 ∗ (𝛿𝑡=0 ⊗ 𝑓0 + 𝑆) 

from which we deduce in particular, when 𝑆 ∈ 𝐶𝑐
∞(ℝ+

∗ × ℝ𝑁), than 

                                             𝑓|ℝ+
∗ ×ℝ𝑁 ∈ 𝐶∞(ℝ+

∗ × ℝ𝑁) 

 

Lemma 6 

Let  be 1N  ,an initial data 𝑓0 ∈ ℰ′(ℝ𝑁) ∩ 𝐿1(ℝ𝑁) and a source term 𝑆 ∈ ℰ′(ℝ+
∗ × ℝ𝑁) such 𝑆(𝑡, . ) ∈ 𝐿1(ℝ𝑁) 

for all t>0, both with compact support. 

We say that a distribution  𝐹 ∈ 𝒮′(ℝ𝑡 × ℝ𝑥
𝑁) such that 𝐹(𝑡, . ) ∈ 𝐿1(ℝ𝑁) is a solution within the meaning of 

(tempered) distributions of the Cauchy problem 

                      2( , ) ( ) ( , ) ( , )t xf x t f t x S t x


    for t> 0, 𝑥 ∈ ℝ𝑁 ,𝑓(𝑡, ) ∈ 𝐿1(ℝ𝑁)for all t>0 

                                                      𝑓(𝑥, 0) = 𝑓0 
when the distribution F verifies 

                                   2
0 0( )t x tF F S f






        in ′(ℝ × ℝ𝑁) , 𝑠𝑢𝑝𝑝(𝐹) ⊂ ℝ+ × ℝ𝑁 

where  S


is the prolongation of 𝑆 by 0 for 0t    

                               ,S 


𝓔′(ℝ×ℝ𝑵),𝑪∞(ℝ×ℝ𝑵)

= *|
, NS 


𝓔′(ℝ+

∗ ×ℝ𝑵),𝑪∞(ℝ+
∗ ×ℝ𝑵)

    

 

 

Proof  the lemma 6 
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For 𝜙 ∈ 𝒮′(ℝ𝑡 × ℝ𝑁), denote by 


 the partial Fourier transform at x of the distribution  , and   the dual 

Fourier variable of x. By applying the partial Fourier transform  


to each member of the two equalities 

occurring in the Cauchy problem, we end up 

                             t f f S



  

    for all t>0, 𝜉 ∈ ℝ𝑁 

                                              
0| 0t

f f



  

When f


 is a function of class 
1C  in ( , )t   then the Cauchy problem above corresponds to a family of indexed 

ordinary differential equations by 𝜉 ∈ ℝ𝑁. 

The case of ordinary differential equations in the lemma 5 suggests that the above Cauchy problem after Fourier 

transformation partial in x admits the following formulation in the sense of the distributions: 

                        0 0t tF F S f


 
   

        in 𝒮′(ℝ × ℝ𝑁)           

                                       𝑠𝑢𝑝𝑝( F


) ⊂ ℝ+ × ℝ𝑁   
By returning to physical variables by inverse Fourier transformation partial in the variable x, end up with the 

following definition of the notion of solution in the sense of distributions for a Cauchy problem with Fractional 

Laplacian    Q.E .D 

 

Proof of the proposition 4 : 

According to the lemma 6. Say that f is the solution of the above Cauchy problem to direction of the tempered 

distributions, that is to say that 𝑓 ∈ 𝒮′(ℝ𝑡 × ℝ𝑁) and 𝑓(𝑡, . ) ∈ 𝐿1(ℝ𝑁) and check 

                                  2
0 0( )t tf f f S






      , 𝑥 ∈ ℝ𝑁 ,t>0 

                                          𝑠𝑢𝑝𝑝(𝑓0) ⊂ ℝ+ × ℝ𝑁 
 

 

where S


 is the extension of the distribution with compact  support S by 0 in ℝ− × ℝ𝑁 

, 

Check that the proposed formula does provide a solution to the problem of Cauchy considered: 

-  Since 𝑓0 and S are compactly supported distributions, the distribution 
0 0t f S



    

 also has compact support. 

- According to [G] the distribution 𝐸𝑁 ∗ (𝛿𝑡=0 ⊗ 𝑓0)coincides with the function 𝐸𝑁(𝑡, . ) ∗ 𝑓0(. ) when 

𝑓0 ∈ 𝐶𝑐(ℝ𝑁) and t>0.This property still remains true if 𝑓0 ∈ 𝐿1(ℝ𝑁),because: 

We know that 𝐶𝑐(ℝ𝑁)  is dense in 𝐿1(ℝ𝑁) , then for all 𝑓0 ∈ 𝐿1(ℝ𝑁), there exists a sequence (𝑓0
𝑛)of 

𝐶𝑐(ℝ𝑁) which converges to 𝑓0 ∈ 𝐿1(ℝ𝑁). According to (2.8): 
‖𝐸𝑁(𝑡, . ) ∗ (𝑓0

𝑛 − 𝑓0)‖1 ≤ ‖𝑓0
𝑛 − 𝑓0‖1when t>0, then the sequence (𝐸𝑁(𝑡, . ) ∗ 𝑓0

𝑛(. )) converges to 𝐸𝑁(𝑡, . ) ∗
𝑓0(. )  in 𝐿1(ℝ𝑁). Thus the convergence is also valid in 𝒟′(ℝ𝑁) when t>0. Hence   (𝐸𝑁 ∗ (𝛿𝑡=0 ⊗ 𝑓0

𝑛)) 

converges to 𝐸𝑁(𝑡, . ) ∗ 𝑓0(. )   when t>0. 

But we have, when 𝜙 ∈ 𝐶𝑐(ℝ𝑡 × ℝ𝑥
𝑁) : 

 |〈𝛿𝑡=0⨂𝑓0
𝑛, 𝜙〉 − 〈𝛿𝑡=0⨂𝑓0, 𝜙〉| ≤ ∫ |𝑓0

𝑛 − 𝑓0|𝜙(0, 𝑥)𝑑𝑥 ≤ 𝑠𝑢𝑝𝑥∈ℝ𝑁|𝜙(0, 𝑥)|‖𝑓0
𝑛 − 𝑓0‖1ℝ𝑁  

ℎence the sequence 𝛿𝑡=0⨂𝑓0
𝑛 converges to 𝛿𝑡=0⨂𝑓0 in 𝒟′(ℝ𝑡 × ℝ𝑁) ,which implies the  convergence of the 

sequence (𝐸𝑁 ∗ (𝛿𝑡=0⨂𝑓0
𝑛) to 𝐸𝑁 ∗ (𝛿𝑡=0⨂𝑓0) in 𝒟′(ℝ𝑡 × ℝ𝑁).Then this convergence is also valid 𝒟′(ℝ+

∗ ×
ℝ𝑁). So we can conclude that when t>0 and 𝑓0 ∈ 𝐿1(ℝ𝑁): 

𝐸𝑁 ∗ (𝛿𝑡=0⨂𝑓0) = 𝐸𝑁(𝑡, . ) ∗ 𝑓0(. ) 

 

-𝐸𝑁 ∗ (𝛿𝑡=0⨂𝑓0) ∈ 𝐿1(ℝ𝑁) for t>0 so 𝐸𝑁 ∗ (𝛿𝑡=0⨂𝑓0 + S


) ∈ 𝐿1(ℝ𝑁) for t>0 

hence ℱ((−Δ)
𝛽

2 (𝐸𝑁 ∗ (𝛿𝑡=0⨂𝑓0 + S


))) = |𝜉|𝛽ℱ((𝐸𝑁 ∗ (𝛿𝑡=0⨂𝑓0 + S


) = 
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|𝜉|𝛽ℱ(𝐸𝑁)ℱ (𝛿𝑡=0⨂𝑓0 + S


) = ℱ((−Δ)
𝛽
2𝐸𝑁)ℱ (𝛿𝑡=0⨂𝑓0 + S



) = 

ℱ((−Δ)
𝛽

2 𝐸𝑁)ℱ (𝛿𝑡=0⨂𝑓0 + S


) = ℱ((−Δ)
𝛽

2 𝐸𝑁) ∗ (𝛿𝑡=0⨂𝑓0 + S


))  ( ℱ the symbol of  Fourier 

transform),  

hence (−Δ)
𝛽

2 (𝐸𝑁 ∗ (𝛿𝑡=0⨂𝑓0 + S


)) = ((−Δ)
𝛽

2𝐸𝑁) ∗ (𝛿𝑡=0⨂𝑓0 + S


) 

So we have : 

2 2
0 0 0 0( ( ) )( ( ) (( ( ) ) ) ( )t x N t t x N tE f S E f S

 

 
 

             
in 𝒟′(ℝ𝑡 × ℝ𝑥

𝑁) 

while 

     0 0 0 0supp( *( )) supp( ) supp( ) ( ) ( )N N

N t N tE f S E f S 
 

            
 

       
N

 
  

 

Let us pass to the uniqueness of the solution in the sense of the tempered distributions  𝑓of the 

Cauchy problem for the heat equation. Suppose there are another, say 𝑔, and set ℎ = 𝑓 − 𝑔 

Then the distribution '( )N

t xh S   and check the conditions: 

                                      2( ) 0th h


        ,t>0 

Applying Lemma 4, we find that  ℎ = 𝑓 − 𝑔 , hence the uniqueness announced. 

 

3.3 Case where the initial data in 𝑳𝟐 

Proposition 5 

 Let 1N   be ,and 0f is an initial data in  
1 2( ) ( )N NL L . There is then a unique solution within the 

meaning of the tempered distributions of the Cauchy problem: 

                                       2( ) 0t xf f


           , 0Nx t   

                                               | 0 0tf f   

 

The restriction of this solution f to 
N

   (for t = 0) into a function belonging to 
2( , ( ))NC L

 and 

given by the formula : 

                   0 0( , ) ( ,.) ( ) ( , ) ( )
N

f t x E t f x E t x y f y dy      a.e   , , 0Nx t   

and                            0(0, ) ( )f x f x     a.e , 
Nx  

 

Proof : 

For all 1,n  , define nf  as the solution in the sense of tempered distributions of the Cauchy problem for the 

heat equation without second member and with initial end data 0

nf  defined by 

                                          0 (0, ) 0( ) 1 ( ) ( )n

B nf x x f x    
Nx  

Obviously,  𝑓0
𝑛 ∈ ℰ′(ℝ𝑁)⋂𝐿1(ℝ𝑁)     so that  

0 0( )n n

N tf E f     (see proposition 4) 

Apply the partial Fourier transform at x to each member of equality above. Noting the dual Fourier variable of x 

and f


 the transform of Fourier of partial f into the variable x, we find that  

                          0 0( , ) ( , ) ( ) ( )
tn n nf t E t f e f




   
  


    a.e  on 

N   for all t>0 
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Let, for all t> 0, be the measurable function ( , )g t    defined  by 
0( , ) ( )

t
g t e f




 



  

we obviously have 
2( ,.) ( )Ng t L with  2 0( ) ( )

( ,.) N NL L
g t f  

Since 0 1
t

e



   for all 

N   and all 0t  . By the theorem of Plancherel, there exists, for all 0t  , a 

unique function ( , )x f t x  belonging to 
2 ( )NL and such that : 

    
0( , ) ( , ) ( )

t
f t g t e f




  
 


     a.e on 

N  , for all t>0 

Let us also denote by 
nf  and f the extensions of 

nf   and f by 0 for t <0.Always thanks to Plancherel's theorem, 

for all 0t   , we have 

       
2

2

0 0
( )

( )

1 1
( ,.) ( ,.) ( ,.) ( ,.)

(2 ) (2 )
N

N

n n n

N NL
L

f t f t f t f t f f
 

  

      

                                                             
20 0

( )
0

N

n

L
f f     

when ,n and in particular, by dominated convergence  

                           
nf f  in 𝒟′ ( )N

t x  for n  

So                       
n

t tf f    and 2 2( ) ( )nf f
 

    in  𝒟′ ( )N

t x  

By the proposition 4, 2
0 0( )n n n

t tf f f


        

and 0 0 0 0

n

t tf f    
 in 𝒟′( ( )N

t x  

we deduce that 2
0 0( )t tf f f



        in   𝒟′(
N

t x ) 

On the other hand, by construction  supp( )n Nf    so that supp( ) Nf         

The uniqueness of this solution is obtained as in proposition 4, by a direct application of 

 Lemma 4. 

 The formula 
0( , ) ( )

t
f t e f




 
 


  a.e on 

N   for all t>0 and Plancherel's theorem show that 

                                             
2

|
( ; ( ))N

Nf C L



  

Indeed, for all 0t   and any sequence 0nt   such that nt t , we have 

  2

2

2

0( )
( ,.) ( ,.) ( ) ( ) 0n

N

N

t

n L
f t f t e e f d

 
 

 


 
     

when n   by dominated convergence, since 

  

                            

2 22

0 0( ) 2 ( )nt t
e e f f

 
 

 
 

 
     a.e on 

N   

Because       

2
2

2n nt t t t
e e e e

   
      
     

Corollary 1 

 Let 1N  be, an initial data 
2 1

0 ( ) ( )N Nf L L   and 
2 1( , ( ) ( ))N NS C L L    such as 

                                                           
2

0

sup ( , )
Nt

S t x dx


   

There then exists a unique 
2 1( , ( ) ( ))N Nf C L L  whose extension by 0 for t <0 is a solution in the 

sense of the tempered distributions of the Cauchy problem 
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                                               2( )t f f S


     
Nx , t>0 

                                                            | 0 0tf f   

 

This solution is given by the formula (see Proposition 2) 

                                

                      0

0

( ,.) ( ) ( ) ( ,.)

t

f t P t f P t s S s ds     for all t>0 

*For ( )P t see propriety 2 

 

The above formula giving f is called the “Duhamel formula ".She is still written equivalently in the form 

                                 
0 ,( , ) ( ( ,.) )( ) (1 ( ) )( , )N N i xf t x E t f x E t S t x


     

Proof: 

For any integer 1n   , note: 

1
, , (0, )

( , ) 1 ( )1 ( ) ( , )n
n B n

n

S t x t x S t x 
 
 

   a.e in 
Nx and for all 0t   

Obviously nS ℰ′ ( )N

  and 
1( ,.) ( )N

nS t L . Let 
n N ng E S



   where 
nS


 denotes the extension 

of nS by 0 for 0t  . Note that ng  is  written    

                              

0

( ,.) ( ) ( ,.)

t

n ng t P t s S s ds   if t<0 

            

By proposition 4, ng  is a solution in the sense of tempered distributions of the Cauchy problem 

                                         2( )t n n ng g S


         
Nx ,t>0 

                                                | 0 0n tg    

 

 

On the other hand, for all t> 0 and all n t , we have 

22

2 2

0 0 0 ( )( )

1

( ) ( )
10

( ) ( ,.) ( ) ( ,.) ( ) ( ,.) ( ) ( ,.)

( ,.) ( ,.) ( ,.)

NN

N N

t t t

n n

LL

tn

nL L

n

P t s S s ds P t s S s ds P t s S s P t s S s ds

S s ds S s S s ds

      

  

  

 

 

see (2.8) and the definition of nS  

For the first term on the right hand side, we have  

                        2 2

1

( ) ( )

0

1
( ,.) sup ( ,.) 0N N

n

L L
S s ds S s

n
  when n   

For the second term, we start by applying to the integral at t the equality of Cauchy-Schwarz, in we observe, 

thanks to the definition of nS , that, for all T> 0 and all  0,t T  

                         2

1
2

2

\ (0, )( )
1 0

( ,.) ( ,.) ( ( , ) 1 ) 0NN

N

t T

n B nL

n

S s S s ds T S s x dxds      

when n   by dominated convergence. Posing 
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0

( ,.) ( ) ( ,.)

t

g t P t s S s ds   if 0,t   ( ,.) 0g t   if t<0 

 

 Hence we have  shown that ( ,.) ( ,.)ng t g t  in 
2 ( )NL  uniformly on  0, ,t T for all T> 0. 

Note that 
1( ,.) ( )Ng t L (see 2.8) 

In particular, ng g in 𝒟′ ( )N , and passing to the limit in the sense of  distributions in  

the equality  2( )t n n ng g S
 

    in 𝒮′( ( )N  

we find that g is a solution in the sense of the tempered distributions of the  Cauchy problem 

                                               2( )t g g S


       , 0Nx t   

                                                     | 0 0tg    

 

 

Check that the restriction of g to 
N

  define an element of  
2 1( , ( ) ( ))N NC L L  when 

1 2( ) ( )N NL L has the norm in 
2 ( )NL .Indeed, for  , ' 0,t t T with 't t , we have, using the 

property 2  

               2

2

'

'

( )

0 0 ( )

( ',.) ( ,.) ( ) ( ,.) ( ) ( ,.)N

N

t t

L

L

g t g t P t s S s ds P t s S s ds       

2 2

'

0 ( ) ( )

( )( ( ' ) ) ( ,.) ( ' ) ( ,.)
N N

t t

tL L

P t s P t t I S s ds P t s S s ds        

2 2

'

( ) ( )

0

( ( ' ) ) ( ,.) ( ' ) ( ,.)N N

t t

L L

t

P t t I S s ds P t s S s ds       

2 2

'

( ) ( )

0

( ( ' ) ) ( ,.) ( ,.)N N

T t

L L

t

P t t I S s ds S s ds      

The second term on the right hand side verifies 

 
2 2

'

( ) ( )
0,

( ,.) ( ' ) sup ( ,.) 0N N

t

L L
s T

t

S s ds t t S s


   when ' 0t t   . As for the first term, it converges to 

0 by convergence dominated when ' 0t t   since 

                                 2 ( )
( ( ' ) ) ( ,.) 0NL
P t t I S s    

according to the propriety 2 and that 
 

2 2( ) ( )
0,

,. ( ( ' ) ) ( ,.) 2 sup ( ,.)N NL L
s T

P t t I S s S s


    

for all  0,s T  thanks to this same propriety. We conclude that 
2 1

|
( ; ( ) ( ))N

N Ng C L L



   

when 
1 2( ) ( )N NL L has the norm in 

2 ( )NL . 

Define 1 0( ,.) ( )f t P t f  when 0t   , 1( ,.) 0f t   when t<0 

 

Hence we can say that 1f is a solution in the sense of tempered distributions of the Cauchy problem                       

2
1 1( ) 0t f f



    , , 0Nx t   

                                                   
1| 0 0tf f     

and 
1 2

1|
( , ( ) ( ))N

N Nf C L L



   
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As the heat equation is linear, we then deduce from the above that  1f f g  is a solution in the sense of the 

tempered distributions of the problem of Cauchy 

                                      2( )t f f S


           , 0Nx t   

                                           | 0 0tf f   

                                     

It is the only one, because if there was another one, the unicity deduce from the lemma 4 ,  

 

And we can say that  
1 2

/
( , ( ) ( ))N

N Nf C L L



   because 

1 2

1/
( , ( ) ( ))N

N Nf C L L



  and 

2 1

|
( ; ( ) ( ))N

N Ng C L L



   

 

Conclusion 

The proofs of all the properties described in this Cauchy problem for heat equation with fractional Laplacian are 

inspired by the proofs of the properties of the Cauchy problem of heat equation                   

1
, ,

2

N

t xf S x t     >0     

                                          | 0 0tf f   

The question is: 

Can we do the same method with the Schrodinger equation? 
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