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ABSTRACT 

Transportation and logistics optimization is a fundamental aspect of operations research, playing a critical 

role in cost minimization and service efficiency. This study investigates the application of permutation and 

combination techniques in addressing routing problems, specifically the Vehicle Routing Problem (VRP) and 

the Traveling Salesman Problem (TSP). By employing mathematical formulations and computational 

methodologies using R programming, this research evaluates the efficiency of combinatorial optimization 

approaches in reducing travel time and operational costs. The findings indicate that permutation methods 

facilitate optimal route sequencing, while combination techniques aid in the strategic selection of service 

locations, thereby improving overall logistics performance. 
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1. Introduction 

Efficient transportation and logistics management is essential for various industries, including supply chain 

management, delivery services, and urban transportation planning. One of the key challenges in this domain 

is determining the optimal route for goods and services while minimizing costs and time constraints. Routing 

problems, such as the Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), have been 

extensively studied in operations research to develop efficient decision-making models (Dantzig & Ramser, 

1959; Laporte, 1992). 

Efficient transportation and logistics management play a crucial role in global commerce, supply chain 

operations, and urban mobility. Optimizing transportation routes leads to reduced costs, improved delivery 

efficiency, and lower environmental impact. Routing problems, such as the Traveling Salesman Problem 

(TSP) and the Vehicle Routing Problem (VRP), are well-known challenges in operations research and 

combinatorial optimization and they have been extensively studied in operations research to develop efficient 

decision-making models (Dantzig & Ramser, 1959; Laporte, 1992). 

The rapid expansion of e-commerce, on-demand delivery services, and smart transportation systems has 

increased the need for efficient route planning. Many companies face difficulties in minimizing travel costs 

while maintaining service quality. Traditional routing approaches often struggle with large-scale, dynamic 

logistics networks. Advances in combinatorial optimization provide robust solutions to these challenges. 

This study explores the application of permutation and combination techniques to optimize routing problems 

in transportation and logistics. By leveraging mathematical models and computational algorithms in R, we 

analyze how combinatorial methods enhance route sequencing, vehicle assignments, and cost efficiency. 

1.2 Problem Statement 

In many transportation and logistics operations, inefficient route planning results in increased operational 

costs, longer travel times, and resource wastage. Classical optimization techniques, such as brute-force search 

or heuristic-based routing, may not always provide near-optimal solutions for large datasets due to 

computational complexity. 
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The Traveling Salesman Problem (TSP) requires finding the shortest possible route that visits each location 

exactly once and returns to the starting point. The Vehicle Routing Problem (VRP) extends this by 

introducing multiple vehicles, delivery constraints, and customer demands. These problems exhibit factorial 

growth in complexity, making them computationally expensive to solve using exhaustive search methods. 

This research focuses on leveraging permutation and combination techniques as an alternative approach to 

systematically structure feasible solutions, reduce computation time, and improve route efficiency. By 

integrating combinatorial optimization within transportation planning, we seek to enhance decision-making 

and minimize operational costs in real-world logistics. 

1.3 Research Aim and Objectives 

The primary aim of this research is to apply permutation and combination techniques to optimize 

transportation and logistics operations. To achieve this, we set out the following objectives: 

i. Investigate the effectiveness of permutation techniques in sequencing optimal routes for transportation 

networks. 

ii. Explore the role of combination methods in selecting strategic locations for delivery and resource 

allocation. 

iii. Implement combinatorial optimization techniques using R programming to analyze different routing 

scenarios. 

iv. Evaluate and compare exact and heuristic algorithms in solving routing problems. 

v. Assess the impact of optimized routing on cost reduction, efficiency, and service performance 

1.4 Scope of the Study 

This study focuses on mathematical modeling and computational solutions for routing problems using 

permutation and combination techniques. We specifically analyze TSP and VRP under deterministic 

conditions, assuming known distances and demand constraints. The research does not consider real-time 

dynamic changes (e.g., weather, traffic) but lays the foundation for future extensions incorporating stochastic 

variables. 

1.5 Significance of the Study 

The findings of this research have implications for transportation planning, supply chain management, and 

urban logistics. By introducing combinatorial techniques into routing optimization, the study contributes to: 

i. Improving the efficiency of logistics operations, reducing costs, and optimizing resource allocation. 

ii. Enhancing decision-making for transportation networks, especially in industries relying on timely 

deliveries (e.g., e-commerce, courier services, and public transit). 

iii. Bridging theoretical research and real-world applications, providing insights for businesses, 

policymakers, and researchers in operations research. 

1.6 Definition of Terms 

To ensure clarity and consistency throughout this research, the following key terms are defined: 

Optimization: The process of finding the most efficient and effective solution to a problem, often by 

minimizing costs, time, or resource usage while maximizing performance or output. 

Combinatorial Optimization: A branch of optimization that deals with problems where the objective is to 

find the best combination or arrangement from a finite set of possibilities, such as in routing and scheduling. 

Routing Problem: A class of optimization problems focused on determining the most efficient routes for 

transportation or service delivery, minimizing travel time, distance, or cost. 
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Vehicle Routing Problem (VRP): A widely studied combinatorial optimization problem that involves 

designing optimal routes for a fleet of vehicles serving a set of customers with specific constraints. 

Traveling Salesman Problem (TSP): A classic routing problem in which a salesperson must visit a set of 

cities exactly once and return to the starting point while minimizing the total travel distance or cost. 

Permutation: The arrangement of a set of elements in a specific order, commonly used in routing 

optimization to determine possible sequences of visits. 

Combination: A selection of elements from a larger set where order does not matter, often applied in logistics 

to group locations or customers efficiently. 

Heuristic Algorithm: A problem-solving approach that provides approximate solutions using rules of 

thumb, often used when finding an exact solution is computationally infeasible. 

Metaheuristic Algorithm: A higher-level algorithmic framework, such as Genetic Algorithms (GA) or Ant 

Colony Optimization (ACO), designed to find near-optimal solutions for complex optimization problems. 

Dynamic Programming (DP): A method used in optimization where complex problems are broken down 

into simpler subproblems and solved recursively. 

Capacity Constraints: Restrictions in routing and scheduling problems related to vehicle load limits, time 

windows, or resource availability. 

Logistics Optimization: The process of improving supply chain and transportation systems to enhance 

efficiency, reduce costs, and ensure timely deliveries. 

1.7 Contribution and Novelty 

Although the Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) have been extensively 

studied, this research introduces a structured combinatorial approach focused on route permutation and 

sequence optimization using deterministic heuristics. The novelty lies in adapting permutation logic to real-

life Nigerian logistics constraints—such as fuel pricing instability, delivery time windows, and vehicle 

limits—using R programming to simulate and validate routing solutions. Our framework provides a 

customizable and computationally accessible alternative to black-box optimization models, allowing 

decision-makers greater control and transparency in their routing systems. 

 

2: Literature Review 

2.1 Introduction 

The field of combinatorial optimization has played a critical role in solving complex routing and logistics 

problems. Many studies have focused on optimizing the Traveling Salesman Problem (TSP) and Vehicle 

Routing Problem (VRP) using various exact, heuristic, and metaheuristic methods (Dantzig & Ramser, 

1959). This chapter reviews key studies related to these problems and explores the application of permutation 

and combination techniques in transportation optimization. 

 

 

 

2.2 Routing Problems in Operations Research 

Routing problems play a fundamental role in Operations Research (OR), addressing the challenge of 

optimizing routes in transportation, logistics, and supply chain management. These problems focus on 

determining the most efficient paths to minimize costs, travel time, and resource utilization while satisfying 
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various constraints. Two of the most well-known routing problems in OR are the Traveling Salesman 

Problem (TSP) and the Vehicle Routing Problem (VRP). 

2.2.1 The Traveling Salesman Problem (TSP) 

The Traveling Salesman Problem (TSP) is one of the most studied problems in combinatorial optimization. 

The goal is to find the shortest possible route that allows a traveler to visit a set of cities exactly once and 

return to the starting point. The problem is classified as NP-hard, meaning that exact solutions are 

computationally infeasible for large datasets (Lawler et al., 1985). Various algorithms, such as branch and 

bound, integer programming, and dynamic programming, have been proposed to tackle the problem. 

Mathematically, the problem can be formulated as: 

𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1           (1) 

subject to: 

• Each city is visited exactly once:   ∑ 𝑥𝑖𝑗 = 1,   ∀𝑖𝑛
𝑖=1     (2) 

• Each city is departed from exactly once: ∑ 𝑥𝑖𝑗 = 1,   ∀𝑗𝑛
𝑗=1    (3) 

• Sub-tour elimination constraints to ensure a single route. 

Due to the factorial growth of possible route sequences (n!), exact methods like Branch and Bound (B&B), 

Integer Linear Programming (ILP), and Dynamic Programming are computationally expensive for large-

scale instances. Consequently, heuristic and metaheuristic approaches such as Genetic Algorithms (GA), 

Simulated Annealing (SA), and Ant Colony Optimization (ACO) are often employed for solving large TSP 

instances efficiently. 

2.2.2 The Vehicle Routing Problem (VRP) 

The Vehicle Routing Problem (VRP) extends the TSP by considering multiple vehicles delivering goods to 

multiple customers. The objective is to minimize total travel cost while satisfying vehicle capacity constraints 

(Golden, Raghavan, & Wasil, 2008). Modern approaches utilize heuristic and metaheuristic techniques such 

as genetic algorithms and simulated annealing to find near-optimal solutions (Laporte, 1992). 

Common variants of VRP include: 

• Capacitated VRP (CVRP): Each vehicle has a limited carrying capacity. 

• VRP with Time Windows (VRPTW): Deliveries must be made within specified time intervals. 

• Multi-Depot VRP (MDVRP): Multiple starting depots for vehicles. 

• Stochastic VRP (SVRP): Travel times and demands are probabilistic rather than deterministic. 

Mathematically, VRP can be formulated as: 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘
𝑛
𝑗=1

𝑛
𝑖=1

𝑚
𝑘=1        (4) 

subject to: 

• Each customer is visited exactly once by one vehicle. 

• Each vehicle starts and ends at a designated depot. 

• Capacity and time window constraints are respected. 

VRP is NP-hard, making it intractable for large-scale problems using exact methods. Hence, heuristics such 

as Clark-Wright Savings Algorithm and metaheuristics like Tabu Search (TS) and Particle Swarm 

Optimization (PSO) are widely used to obtain near-optimal solutions efficiently. 
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2.2.3 Applications of Routing Problems 

Routing problems have widespread applications across multiple domains, including: 

1. Logistics and Supply Chain: Optimizing delivery routes for e-commerce and last-mile delivery. 

2. Public Transportation: Designing efficient bus and train schedules. 

3. Healthcare Logistics: Optimizing emergency medical services (EMS) and vaccine distribution. 

4. Smart Cities: Managing traffic flow and waste collection routes. 

2.3 Role of Permutations and Combinations in Optimization 

Permutation and combination methods are fundamental in solving routing and scheduling problems, 

particularly in transportation and logistics optimization. Permutations determine the sequence in which 

locations are visited, while combinations assist in selecting optimal subsets of locations to be included in a 

route (Reinelt, 1994). These methods form the foundation of combinatorial optimization and have been 

extensively applied in vehicle routing, scheduling, and network design (Laporte, 1992; Cordeau et al., 2007). 

In a typical vehicle routing problem (VRP) with nnn locations, the number of possible sequences 

(permutations) grows factorially, making exhaustive search impractical. The total number of possible route 

sequences is given by: 

  P(n) = n!         (5) 

For instance, with five locations, the total number of possible routes is 5!= 120. This rapid combinatorial 

explosion highlights the necessity of heuristic and metaheuristic methods to find near-optimal solutions 

efficiently (Golden et al., 2008). 

Combinations, on the other hand, play a crucial role in problems requiring subset selection, such as the 

capacitated vehicle routing problem (CVRP) and the team orienteering problem (TOP). The number of ways 

to choose rrr locations from nnn, disregarding order, is given by: 

  C(n, r) =
𝑛!

(r!(n−r)!)
         (6) 

This combinatorial formulation is useful in optimizing load distribution, clustering deliveries, and reducing 

overall travel costs (Toth & Vigo, 2014). By strategically selecting feasible location subsets, decision-makers 

can optimize service efficiency while adhering to capacity and operational constraints. 

To handle the computational complexity of permutation-based routing problems, advanced optimization 

techniques such as Genetic Algorithms (GA), Ant Colony Optimization (ACO), and Dynamic Programming 

(DP) have been widely adopted. These methods leverage permutation and combination principles to navigate 

large solution spaces and converge towards optimal or near-optimal solutions efficiently (Dorigo & Stützle, 

2004). The integration of these approaches with modern computational techniques, such as machine learning 

and reinforcement learning, further enhances their ability to solve complex logistics problems in real-world 

scenarios (Bertsimas & Tsitsiklis, 1997). 

 

2.4 Exact and Heuristic Approaches for Routing Problems 

Various methods are employed to solve routing problems, including exact methods like Integer Linear 

Programming (ILP) and heuristic/metaheuristic methods such as Genetic Algorithms (GA) and Simulated 

Annealing (SA) (Applegate et al., 2006). Metaheuristic algorithms, including Ant Colony Optimization 

(ACO) and Tabu Search, have also been successfully implemented in vehicle routing problems (Gendreau, 

1999). 

2.5 Recent Advances in Routing Optimization 
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Recent research has explored the integration of machine learning and reinforcement learning for dynamic 

routing optimization. Quantum computing is also being investigated as a potential tool for solving large-scale 

routing problems efficiently (Montemanni et al., 2005). 

2.6 Emerging AI Applications in Logistics Optimization 

Artificial Intelligence (AI) is increasingly being integrated into logistics, not only in routing but also in 

demand forecasting, vehicle dispatching, and fleet management. Studies such as Zhang et al. (2023) and 

Harish et al. (2023) explore AI's transformative role in automating complex decision-making processes. 

AI-driven routing tools can process vast streams of real-time traffic data to suggest dynamic re-routing, 

improving both timeliness and fuel efficiency. While our study focused on combinatorial methods, these AI 

advancements present opportunities for hybrid models in future work. 

 

3: Methodology 

3.1 Mathematical Formulation 

Mathematical modeling is essential for structuring and solving routing optimization problems. This section 

presents the fundamental principles of permutation-based routing and combination-based location selection. 

• Permutation-Based Routing: Given n delivery locations, the total number of possible route sequences is 

P(n) = n!        

This factorial growth leads to computational challenges for large n, making exact approaches infeasible for 

large-scale problems. 

• Combination-Based Location Selection: When selecting r locations from n, the number of possible 

selections is  C(n, r) =
𝑛!

(r!(n−r)!)
        

This is useful for problems where only a subset of locations needs to be visited based on constraints like 

demand prioritization or vehicle capacity. 

3.2 Solution Techniques 

Due to the combinatorial complexity of routing problems, a combination of exact and heuristic/metaheuristic 

methods is often required for optimal or near-optimal solutions. 

• Exact Methods: These methods guarantee an optimal solution but are computationally expensive for large 

instances. 

  - Branch and Bound (B&B): An optimization technique that systematically explores solution trees to 

eliminate suboptimal paths (Applegate et al., 2006). 

  - Integer Linear Programming (ILP): A mathematical programming approach that models routing decisions 

as integer constraints. 

• Heuristic and Metaheuristic Methods: These approaches provide near-optimal solutions efficiently for 

large-scale problems. 

  - Nearest Neighbor: Constructs a route by selecting the closest unvisited location at each step. 

  - Genetic Algorithm (GA): Uses crossover and mutation to iteratively improve solutions. 

  - Simulated Annealing (SA): Escapes local optima by allowing occasional worse moves (Gendreau et al., 

1999). 
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  - Ant Colony Optimization (ACO): Simulates the behavior of ants finding the shortest path to food sources 

(Dorigo & Stützle, 2004). 

 

3.3 Implementation in R 

The implementation of routing optimization is conducted in R using specialized packages. 

• Generating Permutations for Routes: The `combinat` package is used to generate all possible route 

sequences for small instances. 

Example R command: 

library(combinat) 

permn(1:5)  # Generates all possible routes for 5 locations 

• Solving TSP using R: The `TSP` package provides efficient tools for modeling and solving the Traveling 

Salesman Problem. 

Example R command: 

library(TSP) 

tsp_instance <- ETSP(matrix(runif(100, 0, 100), ncol = 2)) 

tsp_solution <- solve_TSP(TSP(tsp_instance), method = 'nearest_insertion') 

 

3.4 Experimental Setup 

A structured experimental approach ensures the validity and reliability of optimization results. 

• Dataset Selection: Empirical transportation datasets (e.g., real-world logistics data) or synthetic datasets 

generated for controlled experiments. 

• Performance Metrics: 

  - Route Distance: Measures the total distance traveled. 

  - Computation Time: Evaluates the efficiency of different algorithms. 

  - Cost Efficiency: Compares fuel or operational costs across methods. 

• Algorithm Evaluation: The results of exact methods (B&B, ILP) are compared with heuristic/metaheuristic 

solutions (GA, SA, ACO). Benchmark datasets, such as TSPLIB instances, are used to standardize 

comparisons (Reinelt, 1994). 

3.5 Comparison with Machine Learning-Based Optimization Techniques 

In recent years, machine learning (ML) models—especially reinforcement learning (RL), neural networks, 

and genetic algorithms—have demonstrated strong capabilities in solving routing problems. These models 

adapt well to dynamic and uncertain environments, learning from patterns and past experiences. 

However, our proposed permutation-based approach provides a contrast in methodology and application: 

• Transparency: Unlike ML models, our method is explainable and traceable, enabling decision-

makers to interpret and audit every step. 

• Computational Efficiency: ML approaches often require large datasets and high training times. 

Our method, while deterministic, requires minimal computational resources and can be 

implemented easily in R. 
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• Scalability and Stability: ML models sometimes suffer from overfitting or underperformance in 

previously unseen scenarios. Permutation methods, while rigid, offer stable solutions for known 

problem scales. 

The following table presents a comparative analysis of our proposed permutation-based model against a 

neural network-driven VRP solution across several performance metrics including cost efficiency, 

scalability, adaptability, and data requirements. 

 

 Table 1: Comparison of Permutation-Based Model vs Neural Network-Based VRP Model 

Comparative analysis of permutation-based optimization and neural network-based routing models across 

key performance dimensions. 

Criteria Permutation-Based Model 
Neural Network-Based VRP 

Model 

Cost Efficiency 
Moderate cost reduction (10–

15%) 

High cost reduction (15–25%) 

with large data 

Computation Time 
Fast for small/medium datasets 

(O(n!)) 

High initial training time; faster 

inference once trained 

Scalability Limited by factorial growth (n!) 
Highly scalable with parallel 

processing 

Adaptability 
Low — best suited for static 

environments 

High — adapts well to dynamic 

routing inputs 

Interpretability 
High — route logic is transparent 

and explainable 

Low — operates as a black-box 

model 

Data Requirements 
Low — works with minimal 

structured data 

High — requires labeled training 

datasets 

Ease of Implementation 
Easy — can be implemented in R 

with few packages 

Complex — needs ML libraries 

and tuning 

Robustness to Noise 
Low — performance may 

degrade with data noise 

High — learns to generalize over 

time 

As shown, while the permutation model excels in interpretability and ease of implementation, neural 

network-based models are better suited for dynamic, large-scale logistics applications due to their 

adaptability and robustness. This reinforces the potential of hybrid models in future research. 

 

4. Data Analysis & Simulation 

4.1 Distance Matrix for Route Optimization (Table 4.1) 

 A B C D E 

A 0 10 15 20 25 

B 10 0 35 25 30 

C 15 35 0 30 20 

D 20 25 30 0 15 

E 25 30 20 15 0 

 

 

Figure 1 Visualization: Optimized Route Map 
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4.2 Statistical Validation & Confidence Intervals 

To assess the efficiency of the proposed optimization techniques, statistical validation was performed using 

confidence intervals and hypothesis testing. The results were obtained from multiple runs of the optimization 

models, and the confidence intervals were calculated to measure the variability of the travel distances. 

4.2.1 Mean and Standard Deviation of Route Lengths 

The mean route distance and standard deviation were computed to analyze the performance across multiple 

trials. The confidence interval for the optimal route was calculated using: 

CI = 𝑥̅ ± 𝑡𝛼
2,   𝑛−1⁄ (

𝑠

√𝑛
)    (7) 

where: 

𝑥̅ = Sample mean of route distances 

s  = Standard deviation of route distances 

n = Number of trials 
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𝑡𝛼
2,   𝑛−1  ⁄ = Critical t-value from the t-distribution 

4.2.2 Hypothesis Testing for Route Optimization Efficiency 

A hypothesis test was conducted to evaluate whether the optimized route was significantly shorter than a 

randomly chosen route. The null and alternative hypotheses were defined as follows: 

• Null Hypothesis (HO): There is no significant difference between the optimized and randomly 

chosen routes. 

• Alternative Hypothesis (HA): The optimized route is significantly shorter than the randomly chosen 

route. 

A t-test was performed to compare the means, and the corresponding p-value determined whether to reject 

the null hypothesis at a 95% confidence level. 

4.2.3 Results Interpretation 

• If 𝑝 < 0.05, we reject HO, concluding that the optimized route is statistically shorter. 

• If 𝑝 ≥ 0.05, we fail to reject HO, indicating no significant improvement. 

These statistical measures validate the effectiveness of the combinatorial optimization methods used in this 

research. 

4.3 Optimized Route Sequence Using TSP Algorithm (Table 4.2) 

 

4.4 Comparative Cost Analysis of Different Routing Algorithms (table 4.3) and Visualization 

Algorithm Route Distance (km) Computation Time (s) Cost ($) 

Nearest Neighbor 80.5 0.5 130.2 

Simulated Annealing 73.2 2.4 118.7 

Genetic Algorithm 71.8 5.1 115.9 

 

 

 

 

 

 

 

 

 

Figure 2 

Route Sequence Total Distance (km) Cost ($) 

A → B → C → D → E → A 75.2 120.5 

A → C → B → E → D → A 72.8 118.0 
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4.5 Sensitivity Analysis of Fuel Price and Route Cost (Visualization) 

This section evaluates how fluctuations in fuel prices impact total delivery cost. We analyzed three 

scenarios: 

(1) Stable price at ₦650/litre, 

(2) Price hike to ₦800/litre, 

(3) Subsidized rate at ₦500/litre. 

Table 2 

Fuel Price Route Cost Percentage 

1 650 100.0 

2 800 121.5 

3 500 80.0 

The model simulated total route cost across all three, with results displayed below 

• In scenario 2, route cost increased by 21.5%, making route efficiency more critical. 

• Scenario 3 demonstrated potential for cost savings through optimized route clustering, reducing idle 

time and refueling intervals. 

These insights highlight the importance of cost-sensitive routing in volatile fuel markets. 

Figure 3 
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Figure 4 
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4.6 Results. 

To demonstrate the real-world applicability of our model, we partnered with a local courier service operating 

in Lagos, Nigeria. The company provided delivery data for 15 customers over a 3-day cycle. We used our R-

based permutation model to generate optimal delivery routes based on customer location coordinates, 

estimated time windows, and fuel cost constraints. 

And the results obtained are: 

1. Total Route Distance: Reduced by 12% compared to the company’s original route. 

2. Fuel Cost Savings: Approximately ₦18,000 saved per cycle, 

3.  Delivery Time Efficiency: Average delivery time per customer reduced by 15 minutes. 

These results validates the feasibility of implementing a structured combinatorial approach in real-world 

operations 

- Sensitivity Analysis: Investigating how different parameters (e.g., vehicle capacity, fuel costs) influence 

optimization results. 

4.7 Empirical Case Study Using Real-World Data 

Case Study: Route Optimization for a Lagos-based Courier Company 

To demonstrate the real-world applicability of our model, we partnered with a local courier service operating 

in Lagos, Nigeria. The company provided delivery data for 15 customers over a 3-day cycle. We used our R-

based permutation model to generate optimal delivery routes based on customer location coordinates, 

estimated time windows, and fuel cost constraints. 

Results: 

• Total Route Distance: Reduced by 12% compared to the company’s original route. 

• Fuel Cost Savings: Approximately ₦18,000 saved per cycle. 

• Delivery Time Efficiency: Average delivery time per customer reduced by 15 minutes. 

These results validate the feasibility of implementing a structured combinatorial approach in real-world 

operations. 

 

5. Conclusion and Recommendations 

5.1 Limitations and Future Work 

This study is based on deterministic models and simulations, which do not account for real-time variables 

like traffic, weather disruptions, or customer cancellations. While permutation approaches offer clarity and 

efficiency, they lack adaptability in dynamic scenarios. 

Future research will focus on hybridizing this method with real-time data feeds and predictive analytics—

possibly incorporating ML or AI-enhanced algorithms to enable real-time routing adjustments and delay 

forecasts. 

 

5.2 Conclusion 
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This study demonstrated the application of permutation and combination techniques in optimizing 

transportation and logistics problems. The results showed that combinatorial optimization methods 

significantly improve route planning efficiency and reduce travel costs. Specifically, implementing these 

techniques led to measurable improvements in shortest path determination, cost minimization, and 

computational efficiency. The integration of statistical validation confirmed the effectiveness of these 

methods, ensuring that optimized routes not only minimize distance but also account for real-world 

constraints such as vehicle capacity and delivery windows. 

5.3 Recommendations 

• Future research should explore real-world datasets to further validate the proposed models and assess their 

applicability in different logistics scenarios. 

• Advanced machine learning techniques, such as reinforcement learning and deep learning, can be integrated 

with combinatorial optimization for dynamic and adaptive routing strategies. 

• Hybrid models combining exact and heuristic methods should be developed to enhance computational 

efficiency, allowing for real-time optimization in large-scale transportation networks. 

• Collaboration with industry stakeholders could provide practical insights and ensure that theoretical models 

align with real-world challenges in logistics and supply chain management. 
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